diff options
| author | George Steel <george.steel@gmail.com> | 2023-01-29 21:42:30 -0500 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2023-01-29 21:42:30 -0500 |
| commit | a2c6d5fbcbbfaffb0604705c5530310649a8db82 (patch) | |
| tree | 7aedd594a9fe5f25c9e5aa8078c7b91ebcd90a54 | |
| parent | 73b1fc17cdf3cb1c2477bb0f90b080f52bf4b327 (diff) | |
| parent | 581ecd486999045625995db031e2dc7d55bbe907 (diff) | |
Merge pull request #2027 from inkstitch/george-steel/fix-running-stitch
Replace running stitch algorithm to give consistent stitch lengths
| -rw-r--r-- | lib/elements/satin_column.py | 6 | ||||
| -rw-r--r-- | lib/elements/stroke.py | 13 | ||||
| -rw-r--r-- | lib/stitches/running_stitch.py | 258 | ||||
| -rw-r--r-- | lib/utils/geometry.py | 6 |
4 files changed, 214 insertions, 69 deletions
diff --git a/lib/elements/satin_column.py b/lib/elements/satin_column.py index 1841bba1..be614a04 100644 --- a/lib/elements/satin_column.py +++ b/lib/elements/satin_column.py @@ -877,9 +877,11 @@ class SatinColumn(EmbroideryElement): pairs = self.plot_points_on_rails( self.contour_underlay_stitch_length, -self.contour_underlay_inset_px, -self.contour_underlay_inset_percent/100) - stitches = [p[0] for p in pairs] + [p[1] for p in reversed(pairs)] + if self._center_walk_is_odd(): - stitches = list(reversed(stitches)) + stitches = [p[0] for p in reversed(pairs)] + [p[1] for p in pairs] + else: + stitches = [p[1] for p in pairs] + [p[0] for p in reversed(pairs)] return StitchGroup( color=self.color, diff --git a/lib/elements/stroke.py b/lib/elements/stroke.py index 73973bf7..6aca3847 100644 --- a/lib/elements/stroke.py +++ b/lib/elements/stroke.py @@ -432,21 +432,20 @@ class Stroke(EmbroideryElement): return patch def running_stitch(self, path, stitch_length, tolerance): - repeated_path = [] + stitches = running_stitch(path, stitch_length, tolerance) + repeated_stitches = [] # go back and forth along the path as specified by self.repeats for i in range(self.repeats): if i % 2 == 1: # reverse every other pass - this_path = path[::-1] + this_path = stitches[::-1] else: - this_path = path[:] + this_path = stitches[:] - repeated_path.extend(this_path) + repeated_stitches.extend(this_path) - stitches = running_stitch(repeated_path, stitch_length, tolerance) - - return StitchGroup(self.color, stitches) + return StitchGroup(self.color, repeated_stitches) def ripple_stitch(self): return StitchGroup( diff --git a/lib/stitches/running_stitch.py b/lib/stitches/running_stitch.py index e6a7d010..c1c2d99c 100644 --- a/lib/stitches/running_stitch.py +++ b/lib/stitches/running_stitch.py @@ -4,12 +4,14 @@ # Licensed under the GNU GPL version 3.0 or later. See the file LICENSE for details. import math +from math import tau import typing from copy import copy import numpy as np from shapely import geometry as shgeo from ..utils import prng +from ..utils.geometry import Point """ Utility functions to produce running stitches. """ @@ -49,69 +51,205 @@ def split_segment_random_phase(a, b, length: float, length_sigma: float, random_ return [line.interpolate(x, normalized=False) for x in splits] -def running_stitch(points, stitch_length, tolerance): - """Generate running stitch along a path. - - Given a path and a stitch length, walk along the path in increments of the - stitch length. If sharp corners are encountered, an extra stitch will be - added at the corner to avoid rounding the corner. The starting and ending - point are always stitched. - - The path is described by a set of line segments, each connected to the next. - The line segments are described by a sequence of points. - """ - +class AngleInterval(): + # Modular interval containing either the entire circle or less than half of it + # partially based on https://fgiesen.wordpress.com/2015/09/24/intervals-in-modular-arithmetic/ + + def __init__(self, a: float, b: float, all: bool = False): + self.all = all + self.a = a + self.b = b + + @staticmethod + def all(): + return AngleInterval(0, math.tau, True) + + @staticmethod + def fromBall(p: Point, epsilon: float): + d = p.length() + if d <= epsilon: + return AngleInterval.all() + center = p.angle() + delta = math.asin(epsilon / d) + return AngleInterval(center - delta, center + delta) + + @staticmethod + def fromSegment(a: Point, b: Point): + angleA = a.angle() + angleB = b.angle() + diff = (angleB - angleA) % tau + if diff == 0 or diff == math.pi: + return None + elif diff < math.pi: + return AngleInterval(angleA - 1e-6, angleB + 1e-6) + # slightly larger than normal to avoid rounding error when this method is used in cutSegment + else: + return AngleInterval(angleB - 1e-6, angleA + 1e-6) + + def containsAngle(self, angle: float): + if self.all: + return True + return (angle - self.a) % tau <= (self.b - self.a) % tau + + def containsPoint(self, p: Point): + return self.containsAngle(math.atan2(p.y, p.x)) + + def intersect(self, other): + # assume that each interval contains less than half the circle (or all of it) + if other is None: + return None + elif self.all: + return other + elif other.all: + return self + elif self.containsAngle(other.a): + if other.containsAngle(self.b): + return AngleInterval(other.a, self.b) + else: + return AngleInterval(other.a, other.b) + elif other.containsAngle(self.a): + if self.containsAngle(other.b): + return AngleInterval(self.a, other.b) + else: + return AngleInterval(self.a, self.b) + else: + return None + + def cutSegment(self, origin: Point, a: Point, b: Point): + if self.all: + return None + segArc = AngleInterval.fromSegment(a - origin, b - origin) + if segArc is None: + return a # b is exactly behind origin from a + if segArc.containsAngle(self.a): + return cut_segment_with_angle(origin, self.a, a, b) + elif segArc.containsAngle(self.b): + return cut_segment_with_angle(origin, self.b, a, b) + else: + return None + + +def cut_segment_with_angle(origin: Point, angle: float, a: Point, b: Point) -> Point: + # Assumes the crossing is inside the segment + p = a - origin + d = b - a + c = Point(math.cos(angle), math.sin(angle)) + t = (p.y*c.x - p.x*c.y) / (d.x*c.y - d.y*c.x) + if t < -0.000001 or t > 1.000001: + raise Exception("cut_segment_with_angle returned a parameter of {0} with points {1} {2} and cut line {3} ".format(t, p, b-origin, c)) + return a + d*t + + +def cut_segment_with_circle(origin: Point, r: float, a: Point, b: Point) -> Point: + # assumes that a is inside the circle and b is outside + p = a - origin + d = b - a + # inner products + p2 = p * p + d2 = d * d + r2 = r * r + pd = p * d + # r2 = p2 + 2*pd*t + d2*t*t, quadratic formula + t = (math.sqrt(pd*pd + r2*d2 - p2*d2) - pd) / d2 + if t < -0.000001 or t > 1.000001: + raise Exception("cut_segment_with_circle returned a parameter of {0}".format(t)) + return a + d*t + + +def take_stitch(start: Point, points: typing.Sequence[Point], idx: int, stitch_length: float, tolerance: float): + # Based on a single step of the Zhao-Saalfeld curve simplification algorithm. + # https://cartogis.org/docs/proceedings/archive/auto-carto-13/pdf/linear-time-sleeve-fitting-polyline-simplification-algorithms.pdf + # Adds early termination condition based on stitch length. + if idx >= len(points): + return None, None + + sleeve = AngleInterval.all() + last = start + for i in range(idx, len(points)): + p = points[i] + if sleeve.containsPoint(p - start): + if start.distance(p) < stitch_length: + sleeve = sleeve.intersect(AngleInterval.fromBall(p - start, tolerance)) + last = p + continue + else: + cut = cut_segment_with_circle(start, stitch_length, last, p) + return cut, i + else: + cut = sleeve.cutSegment(start, last, p) + if start.distance(cut) > stitch_length: + cut = cut_segment_with_circle(start, stitch_length, last, p) + return cut, i + return points[-1], None + + +def stitch_curve_evenly(points: typing.Sequence[Point], stitch_length: float, tolerance: float): + # Will split a straight line into even-length stitches while still handling curves correctly. + # Includes end point but not start point. if len(points) < 2: return [] + distLeft = [0] * len(points) + for i in reversed(range(0, len(points) - 1)): + distLeft[i] = distLeft[i + 1] + points[i].distance(points[i+1]) + + i = 1 + last = points[0] + stitches = [] + while i is not None and i < len(points): + d = last.distance(points[i]) + distLeft[i] + if d == 0: + return stitches + stitch_len = d / math.ceil(d / stitch_length) + 0.000001 # correction for rounding error + + stitch, newidx = take_stitch(last, points, i, stitch_len, tolerance) + i = newidx + if stitch is not None: + stitches.append(stitch) + last = stitch + return stitches + + +def path_to_curves(points: typing.List[Point], min_len: float): + # split a path at obvious corner points so that they get stitched exactly + # min_len controls the minimum length after splitting for which it won't split again, + # which is used to avoid creating large numbers of corner points when encouintering micro-messes. + if len(points) < 3: + return [points] + curves = [] + + last = 0 + last_seg = points[1] - points[0] + seg_len = last_seg.length() + for i in range(1, len(points) - 1): + # vectors of the last and next segments + a = last_seg + b = points[i + 1] - points[i] + aabb = (a * a) * (b * b) + abab = (a * b) * abs(a * b) + + # Test if the turn angle from vectors a to b is more than 45 degrees. + # Optimized version of checking if cos(angle(a,b)) <= sqrt(0.5) and is defined + if aabb > 0 and abab <= 0.5 * aabb: + if seg_len >= min_len: + curves.append(points[last: i + 1]) + last = i + seg_len = 0 + + if b * b > 0: + last_seg = b + seg_len += b.length() + + curves.append(points[last:]) + return curves + - # simplify will remove as many points as possible while ensuring that the - # resulting path stays within the specified tolerance of the original path. - path = shgeo.LineString(points) - simplified = path.simplify(tolerance, preserve_topology=False) - - # save the points that simplify picked and make sure we stitch them - important_points = set(simplified.coords) - important_point_indices = [i for i, point in enumerate(points) if point.as_tuple() in important_points] - - output = [] - for start, end in zip(important_point_indices[:-1], important_point_indices[1:]): - # consider sections of the original path, each one starting and ending - # with an important point - section = points[start:end + 1] - if not output or output[-1] != section[0]: - output.append(section[0]) - - # Now split each section up evenly into stitches, each with a length no - # greater than the specified stitch_length. - section_ls = shgeo.LineString(section) - section_length = section_ls.length - if section_length > stitch_length: - # a fractional stitch needs to be rounded up, which will make all - # the stitches shorter - num_stitches = math.ceil(section_length / stitch_length) - actual_stitch_length = section_length / num_stitches - - distance = actual_stitch_length - - segment_start = section[0] - for segment_end in section[1:]: - segment = segment_end - segment_start - segment_length = segment.length() - - if distance < segment_length: - segment_direction = segment.unit() - - while distance < segment_length: - output.append(segment_start + distance * segment_direction) - distance += actual_stitch_length - - distance -= segment_length - segment_start = segment_end - - if points[-1] != output[-1]: - output.append(points[-1]) - - return output +def running_stitch(points, stitch_length, tolerance): + # Turn a continuous path into a running stitch. + stitches = [points[0]] + for curve in path_to_curves(points, 2 * tolerance): + # segments longer than twice the tollerance will usually be forced by it, so set that as the minimum for corner detection + stitches.extend(stitch_curve_evenly(curve, stitch_length, tolerance)) + return stitches def bean_stitch(stitches, repeats): diff --git a/lib/utils/geometry.py b/lib/utils/geometry.py index 0ca13d8f..789f8720 100644 --- a/lib/utils/geometry.py +++ b/lib/utils/geometry.py @@ -211,6 +211,9 @@ class Point: def unit(self): return self.mul(1.0 / self.length()) + def angle(self): + return math.atan2(self.y, self.x) + def rotate_left(self): return self.__class__(-self.y, self.x) @@ -229,6 +232,9 @@ class Point: def __len__(self): return 2 + def __str__(self): + return "({0:.3f}, {1:.3f})".format(self.x, self.y) + def line_string_to_point_list(line_string): return [Point(*point) for point in line_string.coords] |
