summaryrefslogtreecommitdiff
path: root/embroider.py
diff options
context:
space:
mode:
authorLex Neva <github@lexneva.name>2017-09-23 01:03:33 +0100
committerLex Neva <github@lexneva.name>2017-09-23 01:03:33 +0100
commit1e86acdc580c42813add8fa861fdf6a52f0afbda (patch)
tree1ef8f44f196ea8d5bf7f1a6f117216b15de3f4ef /embroider.py
parenta13745e39b842d8f33915a9b119a94558eb54d20 (diff)
rewrite of autofill to handle arbitrary holes!
Diffstat (limited to 'embroider.py')
-rw-r--r--embroider.py568
1 files changed, 442 insertions, 126 deletions
diff --git a/embroider.py b/embroider.py
index c207c670..bd4d1abe 100644
--- a/embroider.py
+++ b/embroider.py
@@ -24,7 +24,8 @@ import os
import subprocess
from copy import deepcopy
import time
-from itertools import chain, izip
+from itertools import chain, izip, groupby
+from collections import deque
import inkex
import simplepath
import simplestyle
@@ -37,6 +38,7 @@ import lxml.etree as etree
import shapely.geometry as shgeo
import shapely.affinity as affinity
import shapely.ops
+import networkx
from pprint import pformat
import PyEmb
@@ -49,7 +51,6 @@ SVG_PATH_TAG = inkex.addNS('path', 'svg')
SVG_DEFS_TAG = inkex.addNS('defs', 'svg')
SVG_GROUP_TAG = inkex.addNS('g', 'svg')
-
class Param(object):
def __init__(self, name, description, unit=None, values=[], type=None, group=None, inverse=False, default=None):
self.name = name
@@ -309,8 +310,11 @@ class Fill(EmbroideryElement):
def north(self, angle):
return self.east(angle).rotate(math.pi / 2)
+ def row_num(self, point, angle, row_spacing):
+ return round((point * self.north(angle)) / row_spacing)
+
def adjust_stagger(self, stitch, angle, row_spacing, max_stitch_length):
- row_num = round((stitch * self.north(angle)) / row_spacing)
+ row_num = self.row_num(stitch, angle, row_spacing)
row_stagger = row_num % self.staggers
stagger_offset = (float(row_stagger) / self.staggers) * max_stitch_length
offset = ((stitch * self.east(angle)) - stagger_offset) % max_stitch_length
@@ -448,6 +452,55 @@ class Fill(EmbroideryElement):
return runs
+ def stitch_row(self, patch, beg, end, angle, row_spacing, max_stitch_length):
+ # We want our stitches to look like this:
+ #
+ # ---*-----------*-----------
+ # ------*-----------*--------
+ # ---------*-----------*-----
+ # ------------*-----------*--
+ # ---*-----------*-----------
+ #
+ # Each successive row of stitches will be staggered, with
+ # num_staggers rows before the pattern repeats. A value of
+ # 4 gives a nice fill while hiding the needle holes. The
+ # first row is offset 0%, the second 25%, the third 50%, and
+ # the fourth 75%.
+ #
+ # Actually, instead of just starting at an offset of 0, we
+ # can calculate a row's offset relative to the origin. This
+ # way if we have two abutting fill regions, they'll perfectly
+ # tile with each other. That's important because we often get
+ # abutting fill regions from pull_runs().
+
+
+ beg = PyEmb.Point(*beg)
+ end = PyEmb.Point(*end)
+
+ row_direction = (end - beg).unit()
+ segment_length = (end - beg).length()
+
+ # only stitch the first point if it's a reasonable distance away from the
+ # last stitch
+ if not patch.stitches or (beg - patch.stitches[-1]).length() > 0.5 * self.options.pixels_per_mm:
+ patch.add_stitch(beg)
+
+ first_stitch = self.adjust_stagger(beg, angle, row_spacing, max_stitch_length)
+
+ # we might have chosen our first stitch just outside this row, so move back in
+ if (first_stitch - beg) * row_direction < 0:
+ first_stitch += row_direction * max_stitch_length
+
+ offset = (first_stitch - beg).length()
+
+ while offset < segment_length:
+ patch.add_stitch(beg + offset * row_direction)
+ offset += max_stitch_length
+
+ if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_mm:
+ patch.add_stitch(end)
+
+
def section_to_patch(self, group_of_segments, angle=None, row_spacing=None, max_stitch_length=None):
if max_stitch_length is None:
max_stitch_length = self.max_stitch_length
@@ -466,58 +519,13 @@ class Fill(EmbroideryElement):
last_end = None
for segment in group_of_segments:
- # We want our stitches to look like this:
- #
- # ---*-----------*-----------
- # ------*-----------*--------
- # ---------*-----------*-----
- # ------------*-----------*--
- # ---*-----------*-----------
- #
- # Each successive row of stitches will be staggered, with
- # num_staggers rows before the pattern repeats. A value of
- # 4 gives a nice fill while hiding the needle holes. The
- # first row is offset 0%, the second 25%, the third 50%, and
- # the fourth 75%.
- #
- # Actually, instead of just starting at an offset of 0, we
- # can calculate a row's offset relative to the origin. This
- # way if we have two abutting fill regions, they'll perfectly
- # tile with each other. That's important because we often get
- # abutting fill regions from pull_runs().
-
(beg, end) = segment
if (swap):
(beg, end) = (end, beg)
- beg = PyEmb.Point(*beg)
- end = PyEmb.Point(*end)
-
- row_direction = (end - beg).unit()
- segment_length = (end - beg).length()
-
- # only stitch the first point if it's a reasonable distance away from the
- # last stitch
- if last_end is None or (beg - last_end).length() > 0.5 * self.options.pixels_per_mm:
- patch.add_stitch(beg)
-
- first_stitch = self.adjust_stagger(beg, angle, row_spacing, max_stitch_length)
-
- # we might have chosen our first stitch just outside this row, so move back in
- if (first_stitch - beg) * row_direction < 0:
- first_stitch += row_direction * max_stitch_length
-
- offset = (first_stitch - beg).length()
-
- while offset < segment_length:
- patch.add_stitch(beg + offset * row_direction)
- offset += max_stitch_length
+ self.stitch_row(patch, beg, end, angle, row_spacing, max_stitch_length)
- if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_mm:
- patch.add_stitch(end)
-
- last_end = end
swap = not swap
return patch
@@ -529,6 +537,9 @@ class Fill(EmbroideryElement):
return [self.section_to_patch(group) for group in groups_of_segments]
+class MaxQueueLengthExceeded(Exception):
+ pass
+
class AutoFill(Fill):
@property
@param('auto_fill', 'Automatically routed fill stitching', type='toggle', default=True)
@@ -580,116 +591,421 @@ class AutoFill(Fill):
@param('fill_underlay_max_stitch_length_mm', 'Max stitch length', unit='mm', group='AutoFill Underlay', type='float')
@cache
def fill_underlay_max_stitch_length(self):
- return self.get_float_param("fill_underlay_max_stitch_length_mm" or self.max_stitch_length)
+ return self.get_float_param("fill_underlay_max_stitch_length_mm") or self.max_stitch_length
- def validate(self):
- if len(self.shape.boundary) > 1:
- self.fatal("auto-fill: object %s cannot be auto-filled because it has one or more holes. Please disable auto-fill for this object or break it into separate objects without holes." % self.node.get('id'))
+ def which_outline(self, coords):
+ """return the index of the outline on which the point resides
- def is_same_run(self, segment1, segment2):
- if shgeo.Point(segment1[0]).distance(shgeo.Point(segment2[0])) > self.max_stitch_length:
- return False
+ Index 0 is the outer boundary of the fill region. 1+ are the
+ outlines of the holes.
+ """
- if shgeo.Point(segment1[1]).distance(shgeo.Point(segment2[1])) > self.max_stitch_length:
- return False
+ point = shgeo.Point(*coords)
+
+ for i, outline in enumerate(self.shape.boundary):
+ # I'd use an intersection check, but floating point errors make it
+ # fail sometimes.
+ if outline.distance(point) < 0.00001:
+ return i
+
+ def project(self, coords, outline_index):
+ """project the point onto the specified outline
+
+ This returns the distance along the outline at which the point resides.
+ """
- return True
+ return self.shape.boundary.project(shgeo.Point(*coords))
- def perimeter_distance(self, p1, p2):
- # how far around the perimeter (and in what direction) do I need to go
- # to get from p1 to p2?
+ def build_graph(self, segments, angle, row_spacing):
+ """build a graph representation of the grating segments
- p1_projection = self.outline.project(shgeo.Point(p1))
- p2_projection = self.outline.project(shgeo.Point(p2))
+ This function builds a specialized graph (as in graph theory) that will
+ help us determine a stitching path. The idea comes from this paper:
- distance = p2_projection - p1_projection
+ http://www.sciencedirect.com/science/article/pii/S0925772100000158
- if abs(distance) > self.outline_length / 2.0:
- # if we'd have to go more than halfway around, it's faster to go
- # the other way
- if distance < 0:
- return distance + self.outline_length
- elif distance > 0:
- return distance - self.outline_length
+ The goal is to build a graph that we know must have an Eulerian Path.
+ An Eulerian Path is a path from edge to edge in the graph that visits
+ every edge exactly once and ends at the node it started at. Algorithms
+ exist to build such a path, and we'll use Hierholzer's algorithm.
+
+ A graph must have an Eulerian Path if every node in the graph has an
+ even number of edges touching it. Our goal here is to build a graph
+ that will have this property.
+
+ Based on the paper linked above, we'll build the graph as follows:
+
+ * nodes are the endpoints of the grating segments, where they meet
+ with the outer outline of the region the outlines of the interior
+ holes in the region.
+ * edges are:
+ * each section of the outer and inner outlines of the region,
+ between nodes
+ * double every other edge in the outer and inner hole outlines
+
+ Doubling up on some of the edges seems as if it will just mean we have
+ to stitch those spots twice. This may be true, but it also ensures
+ that every node has 4 edges touching it, ensuring that a valid stitch
+ path must exist.
+ """
+
+ graph = networkx.MultiGraph()
+
+ # First, add the grating segments as edges. We'll use the coordinates
+ # of the endpoints as nodes, which networkx will add automatically.
+ for segment in segments:
+ # networkx allows us to label nodes with arbitrary data. We'll
+ # mark this one as a grating segment.
+ graph.add_edge(*segment, key="segment")
+
+ for node in graph.nodes():
+ outline_index = self.which_outline(node)
+ outline_projection = self.project(node, outline_index)
+
+ # Tag each node with its index and projection.
+ graph.add_node(node, index=outline_index, projection=outline_projection)
+
+ nodes = graph.nodes(data=True)
+ nodes.sort(key=lambda node: (node[1]['index'], node[1]['projection']))
+
+ for outline_index, nodes in groupby(nodes, key=lambda node: node[1]['index']):
+ nodes = [ node for node, data in nodes ]
+
+ # heuristic: change the order I visit the nodes in the outline if necessary.
+ # If the start and endpoints are in the same row, I can't tell which row
+ # I should treat it as being in.
+ while True:
+ row0 = self.row_num(PyEmb.Point(*nodes[0]), angle, row_spacing)
+ row1 = self.row_num(PyEmb.Point(*nodes[1]), angle, row_spacing)
+
+ if row0 == row1:
+ nodes = nodes[1:] + [nodes[0]]
+ else:
+ break
+
+ # heuristic: it's useful to try to keep the duplicated edges in the same rows.
+ # this prevents the BFS from having to search a ton of edges.
+ row_num = min(row0, row1)
+ if row_num % 2 == 0:
+ edge_set = 0
else:
- # this ought not happen, but just for completeness, return 0 if
- # p1 and p0 are the same point
- return 0
- else:
- return distance
+ edge_set = 1
- def connect_points(self, p1, p2):
- patch = Patch(color=self.color)
+ #print >> sys.stderr, outline_index, "es", edge_set, "rn", row_num, PyEmb.Point(*nodes[0]) * self.north(angle), PyEmb.Point(*nodes[1]) * self.north(angle)
- pos = self.outline.project(shgeo.Point(p1))
- distance = self.perimeter_distance(p1, p2)
- stitches = abs(int(distance / self.running_stitch_length))
+ # add an edge between each successive node
+ for i, (node1, node2) in enumerate(zip(nodes, nodes[1:] + [nodes[0]])):
+ graph.add_edge(node1, node2, key="outline")
- direction = math.copysign(1.0, distance)
- one_stitch = self.running_stitch_length * direction
+ # duplicate edges contained in every other row (exactly half
+ # will be duplicated)
+ row_num = min(self.row_num(PyEmb.Point(*node1), angle, row_spacing),
+ self.row_num(PyEmb.Point(*node2), angle, row_spacing))
- for i in xrange(stitches):
- pos = (pos + one_stitch) % self.outline_length
+ # duplicate every other edge around this outline
+ if i % 2 == edge_set:
+ graph.add_edge(node1, node2, key="extra")
- stitch = PyEmb.Point(*self.outline.interpolate(pos).coords[0])
- # if we're moving along the fill direction, adjust the stitch to
- # match the fill so it blends in
- if patch.stitches:
- if abs((stitch - patch.stitches[-1]) * self.north(self.angle)) < 0.01:
- new_stitch = self.adjust_stagger(stitch, self.angle, self.row_spacing, self.max_stitch_length)
+ if not networkx.is_eulerian(graph):
+ raise Exception("something went wrong: graph is not eulerian")
- # don't push the point past the end of this section of the outline
- if self.outline.distance(shgeo.Point(new_stitch)) <= 0.01:
- stitch = new_stitch
+ return graph
- patch.add_stitch(stitch)
+ def node_list_to_edge_list(self, node_list):
+ return zip(node_list[:-1], node_list[1:])
- return patch
+ def bfs_for_loop(self, graph, starting_node, max_queue_length=2000):
+ to_search = deque()
+ to_search.appendleft(([starting_node], set(), 0))
+
+ while to_search:
+ if len(to_search) > max_queue_length:
+ raise MaxQueueLengthExceeded()
+
+ path, visited_edges, visited_segments = to_search.pop()
+ ending_node = path[-1]
+
+ # get a list of neighbors paired with the key of the edge I can follow to get there
+ neighbors = [
+ (node, key)
+ for node, adj in graph.adj[ending_node].iteritems()
+ for key in adj
+ ]
+
+ # heuristic: try grating segments first
+ neighbors.sort(key=lambda (dest, key): key == "segment", reverse=True)
+
+ for next_node, key in neighbors:
+ # skip if I've already followed this edge
+ edge = (tuple(sorted((ending_node, next_node))), key)
+ if edge in visited_edges:
+ continue
+
+ new_path = path + [next_node]
+
+ if key == "segment":
+ new_visited_segments = visited_segments + 1
+ else:
+ new_visited_segments = visited_segments
+
+ if next_node == starting_node:
+ # ignore trivial loops (down and back a doubled edge)
+ if len(new_path) > 3:
+ return self.node_list_to_edge_list(new_path), new_visited_segments
+
+ new_visited_edges = visited_edges.copy()
+ new_visited_edges.add(edge)
+
+ to_search.appendleft((new_path, new_visited_edges, new_visited_segments))
+
+ def find_loop(self, graph, starting_nodes):
+ """find a loop in the graph that is connected to the existing path
+
+ Start at a candidate node and search through edges to find a path
+ back to that node. We'll use a breadth-first search (BFS) in order to
+ find the shortest available loop.
+
+ In most cases, the BFS should not need to search far to find a loop.
+ The queue should stay relatively short.
+
+ An added heuristic will be used: if the BFS queue's length becomes
+ too long, we'll abort and try a different starting point. Due to
+ the way we've set up the graph, there's bound to be a better choice
+ somewhere else.
+ """
- def get_corner_points(self, section):
- return section[0][0], section[0][-1], section[-1][0], section[-1][-1]
+ #loop = self.simple_loop(graph, starting_nodes[-2])
- def nearest_corner(self, section, point):
- return min(self.get_corner_points(section),
- key=lambda corner: abs(self.perimeter_distance(point, corner)))
+ #if loop:
+ # print >> sys.stderr, "simple_loop success"
+ # starting_nodes.pop()
+ # starting_nodes.pop()
+ # return loop
- def find_nearest_section(self, sections, point):
- sections_with_nearest_corner = [(i, self.nearest_corner(section, point))
- for i, section in enumerate(sections)]
- return min(sections_with_nearest_corner,
- key=lambda(section, corner): abs(self.perimeter_distance(point, corner)))
+ loop = None
+ retry = []
+ max_queue_length = 2000
- def section_from_corner(self, section, start_corner, angle, row_spacing, max_stitch_length):
- if start_corner not in section[0]:
- section = list(reversed(section))
+ while not loop:
+ while not loop and starting_nodes:
+ starting_node = starting_nodes.pop()
+ #print >> sys.stderr, "find loop from", starting_node
- if section[0][0] != start_corner:
- section = [list(reversed(row)) for row in section]
+ try:
+ # Note: if bfs_for_loop() returns None, no loop can be
+ # constructed from the starting_node (because the
+ # necessary edges have already been consumed). In that
+ # case we discard that node and try the next.
+ loop = self.bfs_for_loop(graph, starting_node, max_queue_length)
+
+ if not loop:
+ print >> dbg, "failed on", starting_node
+ dbg.flush()
+ except MaxQueueLengthExceeded:
+ print >> dbg, "gave up on", starting_node
+ dbg.flush()
+ # We're giving up on this node for now. We could try
+ # this node again later, so add it to the bottm of the
+ # stack.
+ retry.append(starting_node)
+
+ # Darn, couldn't find a loop. Try harder.
+ starting_nodes.extendleft(retry)
+ max_queue_length *= 2
+
+ starting_nodes.extendleft(retry)
+ return loop
+
+ def insert_loop(self, path, loop):
+ """insert a sub-loop into an existing path
+
+ The path will be a series of edges describing a path through the graph
+ that ends where it starts. The loop will be similar, and its starting
+ point will be somewhere along the path.
+
+ Insert the loop into the path, resulting in a longer path.
+
+ Both the path and the loop will be a list of edges specified as a
+ start and end point. The points will be specified in order, such
+ that they will look like this:
+
+ ((p1, p2), (p2, p3), (p3, p4) ... (pn, p1))
+
+ path will be modified in place.
+ """
+
+ loop_start = loop[0][0]
+
+ for i, (start, end) in enumerate(path):
+ if start == loop_start:
+ break
+
+ path[i:i] = loop
+
+ def find_stitch_path(self, graph, segments):
+ """find a path that visits every grating segment exactly once
+
+ Theoretically, we just need to find an Eulerian Path in the graph.
+ However, we don't actually care whether every single edge is visited.
+ The edges on the outline of the region are only there to help us get
+ from one grating segment to the next.
+
+ We'll build a "cycle" (a path that ends where it starts) using
+ Hierholzer's algorithm. We'll stop once we've visited every grating
+ segment.
+
+ Hierholzer's algorithm says to select an arbitrary starting node at
+ each step. In order to produce a reasonable stitch path, we'll select
+ the vertex carefully such that we get back-and-forth traversal like
+ mowing a lawn.
+
+ To do this, we'll use a simple heuristic: try to start from nodes in
+ the order of most-recently-visited first.
+ """
+
+ graph = graph.copy()
+ num_segments = len(segments)
+ segments_visited = 0
+ nodes_visited = deque()
+
+ # start with a simple loop: down one segment and then back along the
+ # outer border to the starting point.
+ path = [segments[0], list(reversed(segments[0]))]
+
+ graph.remove_edges_from(path)
+
+ segments_visited += 1
+ nodes_visited.extend(segments[0])
+
+ while segments_visited < num_segments:
+ result = self.find_loop(graph, nodes_visited)
+
+ if not result:
+ print >> sys.stderr, "Unexpected error filling region. Please send your SVG to lexelby@github."
+ break
+
+ loop, segments = result
+
+ print >> dbg, "found loop:", loop
+ dbg.flush()
+
+ segments_visited += segments
+ nodes_visited += [edge[0] for edge in loop]
+ graph.remove_edges_from(loop)
+
+ self.insert_loop(path, loop)
+
+ #if segments_visited >= 12:
+ # break
+
+ return path
+
+ def collapse_sequential_outline_edges(self, graph, path):
+ """collapse sequential edges that fall on the same outline
+
+ When the path follows multiple edges along the outline of the region,
+ replace those edges with the starting and ending points. We'll use
+ these to stitch along the outline later on.
+ """
+
+ start_of_run = None
+ new_path = []
+
+ for edge in path:
+ if graph.has_edge(*edge, key="segment"):
+ if start_of_run:
+ # close off the last run
+ new_path.append((start_of_run, edge[0]))
+ start_of_run = None
+
+ new_path.append(edge)
+ else:
+ if not start_of_run:
+ start_of_run = edge[0]
+
+ if start_of_run:
+ # if we were still in a run, close it off
+ new_path.append((start_of_run, edge[1]))
+
+ return new_path
+
+ def connect_points(self, patch, start, end):
+ outline_index = self.which_outline(start)
+ outline = self.shape.boundary[outline_index]
+
+ start = outline.project(shgeo.Point(*start))
+ end = outline.project(shgeo.Point(*end))
+
+ direction = math.copysign(1.0, end - start)
+
+ while (end - start) * direction > 0:
+ stitch = outline.interpolate(start)
+ patch.add_stitch(PyEmb.Point(stitch.x, stitch.y))
+
+ start += self.running_stitch_length * direction
+
+ stitch = outline.interpolate(end)
+ end = PyEmb.Point(stitch.x, stitch.y)
+ if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_mm:
+ patch.add_stitch(end)
+
+ def path_to_patch(self, graph, path, angle, row_spacing, max_stitch_length):
+ path = self.collapse_sequential_outline_edges(graph, path)
+
+ patch = Patch(color=self.color)
+ #patch.add_stitch(PyEmb.Point(*path[0][0]))
+
+ #for edge in path:
+ # patch.add_stitch(PyEmb.Point(*edge[1]))
+
+ for edge in path:
+ if graph.has_edge(*edge, key="segment"):
+ self.stitch_row(patch, edge[0], edge[1], angle, row_spacing, max_stitch_length)
+ else:
+ self.connect_points(patch, *edge)
+
+ return patch
+
+ def visualize_graph(self, graph):
+ patches = []
+
+ graph = graph.copy()
+
+ for start, end, key in graph.edges_iter(keys=True):
+ if key == "extra":
+ patch = Patch(color="#FF0000")
+ patch.add_stitch(PyEmb.Point(*start))
+ patch.add_stitch(PyEmb.Point(*end))
+ patches.append(patch)
+
+ return patches
- return self.section_to_patch(section, angle, row_spacing, max_stitch_length)
def do_auto_fill(self, angle, row_spacing, max_stitch_length, starting_point=None):
+ patches = []
+
rows_of_segments = self.intersect_region_with_grating(angle, row_spacing)
- sections = self.pull_runs(rows_of_segments)
+ segments = [segment for row in rows_of_segments for segment in row]
- patches = []
- last_stitch = starting_point
- while sections:
- if last_stitch:
- section_index, start_corner = self.find_nearest_section(sections, last_stitch)
- patches.append(self.connect_points(last_stitch, start_corner))
- patches.append(self.section_from_corner(sections.pop(section_index), start_corner, angle, row_spacing, max_stitch_length))
- else:
- patches.append(self.section_to_patch(sections.pop(0), angle, row_spacing, max_stitch_length))
+ graph = self.build_graph(segments, angle, row_spacing)
+ path = self.find_stitch_path(graph, segments)
- last_stitch = patches[-1].stitches[-1]
+ # snip off the last one because it just unnecessarily returns to the start
+ path.pop()
+
+ if starting_point:
+ patch = Patch(self.color)
+ self.connect_points(patch, starting_point, path[0][0])
+ patches.append(patch)
+
+ patches.append(self.path_to_patch(graph, path, angle, row_spacing, max_stitch_length))
return patches
+
def to_patches(self, last_patch):
- print >> dbg, "autofill"
- self.validate()
+ print >> dbg, "autofill", self.max_stitch_length, self.fill_underlay_max_stitch_length
patches = []