summaryrefslogtreecommitdiff
path: root/embroider.py.save
diff options
context:
space:
mode:
Diffstat (limited to 'embroider.py.save')
-rw-r--r--embroider.py.save1147
1 files changed, 0 insertions, 1147 deletions
diff --git a/embroider.py.save b/embroider.py.save
deleted file mode 100644
index c580ac46..00000000
--- a/embroider.py.save
+++ /dev/null
@@ -1,1147 +0,0 @@
-#!/usr/bin/python
-#
-# documentation: see included index.html
-# LICENSE:
-# Copyright 2010 by Jon Howell,
-# Originally licensed under <a href="http://www.gnu.org/licenses/quick-guide-gplv3.html">GPLv3</a>.
-# Copyright 2015 by Bas Wijnen <wijnen@debian.org>.
-# New parts are licensed under AGPL3 or later.
-# (Note that this means this work is licensed under the common part of those two: AGPL version 3.)
-#
-# Important resources:
-# lxml interface for walking SVG tree:
-# http://codespeak.net/lxml/tutorial.html#elementpath
-# Inkscape library for extracting paths from SVG:
-# http://wiki.inkscape.org/wiki/index.php/Python_modules_for_extensions#simplepath.py
-# Shapely computational geometry library:
-# http://gispython.org/shapely/manual.html#multipolygons
-# Embroidery file format documentation:
-# http://www.achatina.de/sewing/main/TECHNICL.HTM
-
-import sys
-sys.path.append("/usr/share/inkscape/extensions")
-import os
-import subprocess
-from copy import deepcopy
-import time
-from itertools import chain, izip
-import inkex
-import simplepath
-import simplestyle
-import simpletransform
-from bezmisc import bezierlength, beziertatlength, bezierpointatt
-from cspsubdiv import cspsubdiv
-import cubicsuperpath
-import math
-import lxml.etree as etree
-import shapely.geometry as shgeo
-import shapely.affinity as affinity
-from pprint import pformat
-
-import PyEmb
-
-dbg = open("/tmp/embroider-debug.txt", "w")
-PyEmb.dbg = dbg
-
-SVG_PATH_TAG = inkex.addNS('path', 'svg')
-SVG_DEFS_TAG = inkex.addNS('defs', 'svg')
-SVG_GROUP_TAG = inkex.addNS('g', 'svg')
-
-class EmbroideryElement(object):
- def __init__(self, node, options):
- self.node = node
- self.options = options
-
- def get_param(self, param, default):
- value = self.node.get("embroider_" + param)
-
- if value is None or not value.strip():
- if default is None:
- try:
- default = getattr(self.options, "%s_mm" % param) * self.options.pixels_per_mm
- except AttributeError:
- default = getattr(self.options, param, None)
-
- return default
-
- return value.strip()
-
- def get_boolean_param(self, param, default=None):
- value = self.get_param(param, default)
-
- if isinstance(value, bool):
- return value
- else:
- return value and (value.lower() in ('yes', 'y', 'true', 't', '1'))
-
- def get_float_param(self, param, default=None):
- value = self.get_param(param, default)
-
- try:
- return float(value)
- except TypeError:
- return default
-
-
- def get_int_param(self, param, default=None):
- value = self.get_param(param, default)
-
- try:
- return int(value)
- except ValueError:
- return default
-
- def get_style(self, style_name):
- style = simplestyle.parseStyle(self.node.get("style"))
- if (style_name not in style):
- return None
- value = style[style_name]
- if value == 'none':
- return None
- return value
-
- def has_style(self, style_name):
- style = simplestyle.parseStyle(self.node.get("style"))
- return style_name in style
-
- def parse_path(self):
- # A CSP is a "cubic superpath".
- #
- # A "path" is a sequence of strung-together bezier curves.
- #
- # A "superpath" is a collection of paths that are all in one object.
- #
- # The "cubic" bit in "cubic superpath" is because the bezier curves
- # inkscape uses involve cubic polynomials.
- #
- # Each path is a collection of tuples, each of the form:
- #
- # (control_before, point, control_after)
- #
- # A bezier curve segment is defined by an endpoint, a control point,
- # a second control point, and a final endpoint. A path is a bunch of
- # bezier curves strung together. One could represent a path as a set
- # of four-tuples, but there would be redundancy because the ending
- # point of one bezier is the starting point of the next. Instead, a
- # path is a set of 3-tuples as shown above, and one must construct
- # each bezier curve by taking the appropriate endpoints and control
- # points. Bleh. It should be noted that a straight segment is
- # represented by having the control point on each end equal to that
- # end's point.
- #
- # In a path, each element in the 3-tuple is itself a tuple of (x, y).
- # Tuples all the way down. Hasn't anyone heard of using classes?
-
- path = cubicsuperpath.parsePath(self.node.get("d"))
-
- # print >> sys.stderr, pformat(path)
-
- # start with the identity transform
- transform = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]
-
- # combine this node's transform with all parent groups' transforms
- transform = simpletransform.composeParents(self.node, transform)
-
- # apply the combined transform to this node's path
- simpletransform.applyTransformToPath(transform, path)
-
- return path
-
- def flatten(self, path):
- """approximate a path containing beziers with a series of points"""
-
- path = deepcopy(path)
-
- cspsubdiv(path, self.options.flat)
-
- flattened = []
-
- for comp in path:
- vertices = []
- for ctl in comp:
- vertices.append((ctl[1][0], ctl[1][1]))
- flattened.append(vertices)
-
- return flattened
-
- def to_patches(self):
- raise NotImplementedError("%s must implement to_path()" % self.__class__.__name__)
-
- def fatal(self, message):
- print >> sys.stderr, "error:", message
- sys.exit(1)
-
-
-class Fill(EmbroideryElement):
- def __init__(self, *args, **kwargs):
- super(Fill, self).__init__(*args, **kwargs)
-
- self.shape = self.get_shape()
-
- @property
- def angle(self):
- return math.radians(self.get_float_param('angle', 0))
-
- @property
- def color(self):
- return self.get_style("fill")
-
- @property
- def flip(self):
- return self.get_boolean_param("flip", False)
-
- @property
- def row_spacing(self):
- return self.get_float_param("row_spacing")
-
- @property
- def max_stitch_length(self):
- return self.get_float_param("max_stitch_length")
-
- @property
- def staggers(self):
- return self.get_int_param("staggers", 4)
-
- @property
- def paths(self):
- return self.flatten(self.parse_path())
-
- def get_shape(self):
- poly_ary = []
- for sub_path in self.paths:
- point_ary = []
- last_pt = None
- for pt in sub_path:
- if (last_pt is not None):
- vp = (pt[0] - last_pt[0], pt[1] - last_pt[1])
- dp = math.sqrt(math.pow(vp[0], 2.0) + math.pow(vp[1], 2.0))
- # dbg.write("dp %s\n" % dp)
- if (dp > 0.01):
- # I think too-close points confuse shapely.
- point_ary.append(pt)
- last_pt = pt
- else:
- last_pt = pt
- poly_ary.append(point_ary)
-
- print >> dbg, poly_ary
-
- # shapely's idea of "holes" are to subtract everything in the second set
- # from the first. So let's at least make sure the "first" thing is the
- # biggest path.
- # TODO: actually figure out which things are holes and which are shells
- poly_ary.sort(key=lambda point_list: shgeo.Polygon(point_list).area, reverse=True)
-
- polygon = shgeo.MultiPolygon([(poly_ary[0], poly_ary[1:])])
- # print >> sys.stderr, "polygon valid:", polygon.is_valid
- return polygon
-
- def intersect_region_with_grating(self):
- # the max line length I'll need to intersect the whole shape is the diagonal
- (minx, miny, maxx, maxy) = self.shape.bounds
- upper_left = PyEmb.Point(minx, miny)
- lower_right = PyEmb.Point(maxx, maxy)
- length = (upper_left - lower_right).length()
- half_length = length / 2.0
-
- # Now get a unit vector rotated to the requested angle. I use -angle
- # because shapely rotates clockwise, but my geometry textbooks taught
- # me to consider angles as counter-clockwise from the X axis.
- direction = PyEmb.Point(1, 0).rotate(-self.angle)
-
- # and get a normal vector
- normal = direction.rotate(math.pi / 2)
-
- # I'll start from the center, move in the normal direction some amount,
- # and then walk left and right half_length in each direction to create
- # a line segment in the grating.
- center = PyEmb.Point((minx + maxx) / 2.0, (miny + maxy) / 2.0)
-
- # I need to figure out how far I need to go along the normal to get to
- # the edge of the shape. To do that, I'll rotate the bounding box
- # angle degrees clockwise and ask for the new bounding box. The max
- # and min y tell me how far to go.
-
- _, start, _, end = affinity.rotate(self.shape, self.angle, origin='center', use_radians=True).bounds
-
- # convert start and end to be relative to center (simplifies things later)
- start -= center.y
- end -= center.y
-
- # offset start slightly so that rows are always an even multiple of
- # row_spacing_px from the origin. This makes it so that abutting
- # fill regions at the same angle and spacing always line up nicely.
- start -= (start + normal * center) % self.row_spacing
-
- rows = []
-
- while start < end:
- p0 = center + normal.mul(start) + direction.mul(half_length)
- p1 = center + normal.mul(start) - direction.mul(half_length)
- endpoints = [p0.as_tuple(), p1.as_tuple()]
- grating_line = shgeo.LineString(endpoints)
-
- res = grating_line.intersection(self.shape)
-
- if (isinstance(res, shgeo.MultiLineString)):
- runs = map(lambda line_string: line_string.coords, res.geoms)
- else:
- if res.is_empty or len(res.coords) == 1:
- # ignore if we intersected at a single point or no points
- start += self.row_spacing
- continue
- runs = [res.coords]
-
- runs.sort(key=lambda seg: (PyEmb.Point(*seg[0]) - upper_left).length())
-
- if self.flip:
- runs.reverse()
- runs = map(lambda run: tuple(reversed(run)), runs)
-
- rows.append(runs)
-
- start += self.row_spacing
-
- return rows
-
- def pull_runs(self, rows):
- # Given a list of rows, each containing a set of line segments,
- # break the area up into contiguous patches of line segments.
- #
- # This is done by repeatedly pulling off the first line segment in
- # each row and calling that a shape. We have to be careful to make
- # sure that the line segments are part of the same shape. Consider
- # the letter "H", with an embroidery angle of 45 degrees. When
- # we get to the bottom of the lower left leg, the next row will jump
- # over to midway up the lower right leg. We want to stop there and
- # start a new patch.
-
- # Segments more than this far apart are considered not to be part of
- # the same run.
- row_distance_cutoff = self.row_spacing * 1.1
-
- def make_quadrilateral(segment1, segment2):
- return shgeo.Polygon((segment1[0], segment1[1], segment2[1], segment2[0], segment1[0]))
-
- def is_same_run(segment1, segment2):
- if shgeo.LineString(segment1).distance(shgeo.LineString(segment1)) > row_distance_cutoff:
- return False
-
- quad = make_quadrilateral(segment1, segment2)
- quad_area = quad.area
- intersection_area = self.shape.intersection(quad).area
-
- return (intersection_area / quad_area) >= 0.9
-
- # for row in rows:
- # print >> sys.stderr, len(row)
-
- # print >>sys.stderr, "\n".join(str(len(row)) for row in rows)
-
- runs = []
- count = 0
- while (len(rows) > 0):
- run = []
- prev = None
-
- for row_num in xrange(len(rows)):
- row = rows[row_num]
- first, rest = row[0], row[1:]
-
- # TODO: only accept actually adjacent rows here
- if prev is not None and not is_same_run(prev, first):
- break
-
- run.append(first)
- prev = first
-
- rows[row_num] = rest
-
- # print >> sys.stderr, len(run)
- runs.append(run)
- rows = [row for row in rows if len(row) > 0]
-
- count += 1
-
- return runs
-
- def to_patches(self):
- rows_of_segments = self.intersect_region_with_grating()
- groups_of_segments = self.pull_runs(rows_of_segments)
-
- # "east" is the name of the direction that is to the right along a row
- east = PyEmb.Point(1, 0).rotate(-self.angle)
-
- # print >> sys.stderr, len(groups_of_segments)
-
- patches = []
- for group_of_segments in groups_of_segments:
- patch = Patch(color=self.color)
- first_segment = True
- swap = False
- last_end = None
-
- for segment in group_of_segments:
- # We want our stitches to look like this:
- #
- # ---*-----------*-----------
- # ------*-----------*--------
- # ---------*-----------*-----
- # ------------*-----------*--
- # ---*-----------*-----------
- #
- # Each successive row of stitches will be staggered, with
- # num_staggers rows before the pattern repeats. A value of
- # 4 gives a nice fill while hiding the needle holes. The
- # first row is offset 0%, the second 25%, the third 50%, and
- # the fourth 75%.
- #
- # Actually, instead of just starting at an offset of 0, we
- # can calculate a row's offset relative to the origin. This
- # way if we have two abutting fill regions, they'll perfectly
- # tile with each other. That's important because we often get
- # abutting fill regions from pull_runs().
-
- (beg, end) = segment
-
- if (swap):
- (beg, end) = (end, beg)
-
- beg = PyEmb.Point(*beg)
- end = PyEmb.Point(*end)
-
- row_direction = (end - beg).unit()
- segment_length = (end - beg).length()
-
- # only stitch the first point if it's a reasonable distance away from the
- # last stitch
- if last_end is None or (beg - last_end).length() > 0.5 * self.options.pixels_per_mm:
- patch.add_stitch(beg)
-
- # Now, imagine the coordinate axes rotated by 'angle' degrees, such that
- # the rows are parallel to the X axis. We can find the coordinates in these
- # axes of the beginning point in this way:
- relative_beg = beg.rotate(self.angle)
-
- absolute_row_num = round(relative_beg.y / self.row_spacing)
- row_stagger = absolute_row_num % self.staggers
- row_stagger_offset = (float(row_stagger) / self.staggers) * self.max_stitch_length
-
- first_stitch_offset = (relative_beg.x - row_stagger_offset) % self.max_stitch_length
-
- first_stitch = beg - east * first_stitch_offset
-
- # we might have chosen our first stitch just outside this row, so move back in
- if (first_stitch - beg) * row_direction < 0:
- first_stitch += row_direction * self.max_stitch_length
-
- offset = (first_stitch - beg).length()
-
- while offset < segment_length:
- patch.add_stitch(beg + offset * row_direction)
- offset += self.max_stitch_length
-
- if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_mm:
- patch.add_stitch(end)
-
- last_end = end
- swap = not swap
-
- patches.append(patch)
- return patches
-
-
-class Stroke(EmbroideryElement):
- @property
- def color(self):
- return self.get_style("stroke")
-
- @property
- def width(self):
- stroke_width = self.get_style("stroke-width")
-
- if stroke_width.endswith("px"):
- stroke_width = stroke_width[:-2]
-
- return float(stroke_width)
-
- @property
- def dashed(self):
- return self.get_style("stroke-dasharray") is not None
-
- @property
- def running_stitch_length(self):
- return self.get_float_param("running_stitch_length")
-
- @property
- def zigzag_spacing(self):
- return self.get_float_param("zigzag_spacing")
-
- @property
- def repeats(self):
- return self.get_int_param("repeats", 1)
-
- @property
- def paths(self):
- return self.flatten(self.parse_path())
-
- def is_running_stitch(self):
- # stroke width <= 0.5 pixels is deprecated in favor of dashed lines
- return self.dashed or self.width <= 0.5
-
- def stroke_points(self, emb_point_list, zigzag_spacing, stroke_width):
- patch = Patch(color=self.color)
- p0 = emb_point_list[0]
- rho = 0.0
- side = 1
- last_segment_direction = None
-
- for repeat in xrange(self.repeats):
- if repeat % 2 == 0:
- order = range(1, len(emb_point_list))
- else:
- order = range(-2, -len(emb_point_list) - 1, -1)
-
- for segi in order:
- p1 = emb_point_list[segi]
-
- # how far we have to go along segment
- seg_len = (p1 - p0).length()
- if (seg_len == 0):
- continue
-
- # vector pointing along segment
- along = (p1 - p0).unit()
-
- # vector pointing to edge of stroke width
- perp = along.rotate_left().mul(stroke_width * 0.5)
-
- if stroke_width == 0.0 and last_segment_direction is not None:
- if abs(1.0 - along * last_segment_direction) > 0.5:
- # if greater than 45 degree angle, stitch the corner
- rho = self.zigzag_spacing
- patch.add_stitch(p0)
-
- # iteration variable: how far we are along segment
- while (rho <= seg_len):
- left_pt = p0 + along * rho + perp * side
- patch.add_stitch(left_pt)
- rho += self.zigzag_spacing
- side = -side
-
- p0 = p1
- last_segment_direction = along
- rho -= seg_len
-
- if (p0 - patch.stitches[-1]).length() > 0.1:
- patch.add_stitch(p0)
-
- return patch
-
- def to_patches(self):
- patches = []
-
- for path in self.paths:
- path = [PyEmb.Point(x, y) for x, y in path]
- if self.is_running_stitch():
- patch = self.stroke_points(path, self.running_stitch_length, stroke_width=0.0)
- else:
- patch = self.stroke_points(path, self.zigzag_spacing/2.0, stroke_width=self.width)
-
- patches.append(patch)
-
- return patches
-
-
-class SatinColumn(EmbroideryElement):
- def __init__(self, *args, **kwargs):
- super(SatinColumn, self).__init__(*args, **kwargs)
-
- self.csp = self.parse_path()
- self.flattened_beziers = self.get_flattened_paths()
-
- @property
- def color(self):
- return self.get_style("stroke")
-
- @property
- def zigzag_spacing(self):
- # peak-to-peak distance between zigzags
- return self.get_float_param("zigzag_spacing")
-
- @property
- def pull_compensation(self):
- # In satin stitch, the stitches have a tendency to pull together and
- # narrow the entire column. We can compensate for this by stitching
- # wider than we desire the column to end up.
- return self.get_float_param("pull_compensation", 0)
-
- @property
- def contour_underlay(self):
- # "Contour underlay" is stitching just inside the rectangular shape
- # of the satin column; that is, up one side and down the other.
- return self.get_boolean_param("contour_underlay")
-
- @property
- def contour_underlay_stitch_length(self):
- # use "contour_underlay_stitch_length", or, if not set, default to "stitch_length"
- return self.get_float_param("contour_underlay_stitch_length", self.get_float_param("stitch_length"))
-
- @property
- def contour_underlay_inset(self):
- # how far inside the edge of the column to stitch the underlay
- return self.get_float_param("contour_underlay_inset", 0.4)
-
- @property
- def center_walk_underlay(self):
- # "Center walk underlay" is stitching down and back in the centerline
- # between the two sides of the satin column.
- return self.get_boolean_param("center_walk_underlay")
-
- @property
- def center_walk_underlay_stitch_length(self):
- # use "center_walk_underlay_stitch_length", or, if not set, default to "stitch_length"
- return self.get_float_param("center_walk_underlay_stitch_length", self.get_float_param("stitch_length"))
-
- @property
- def zigzag_underlay(self):
- return self.get_boolean_param("zigzag_underlay")
-
- @property
- def zigzag_underlay_spacing(self):
- # peak-to-peak distance between zigzags in zigzag underlay
- return self.get_float_param("zigzag_underlay_spacing", 1)
-
- @property
- def zigzag_underlay_inset(self):
- # how far in from the edge of the satin the points in the zigzags
- # should be
-
- # Default to half of the contour underlay inset. That is, if we're
- # doing both contour underlay and zigzag underlay, make sure the
- # points of the zigzag fall outside the contour underlay but inside
- # the edges of the satin column.
- return self.get_float_param("zigzag_underlay_inset", self.contour_underlay_inset / 2.0)
-
- def get_flattened_paths(self):
- # Given a pair of paths made up of bezier segments, flatten
- # each individual bezier segment into line segments that approximate
- # the curves. Retain the divisions between beziers -- we'll use those
- # later.
-
- paths = []
-
- for path in self.csp:
- # See the documentation in the parent class for parse_path() for a
- # description of the format of the CSP. Each bezier is constructed
- # using two neighboring 3-tuples in the list.
-
- path = []
-
- # iterate over pairs of 3-tuples
- for prev, current in zip(path[:-1], path[1:]):
- flattened = self.flatten([prev, current])
- flattened = [PyEmb.point(x, y) for x, y in flattened]
- path.append(flattened)
-
- paths.append(path)
-
- return zip(*paths)
-
- def validate_satin_column(self):
- # The node should have exactly two paths with no fill. Each
- # path should have the same number of points, meaning that they
- # will both be made up of the same number of bezier curves.
-
- node_id = self.node.get("id")
-
- if len(self.csp) != 2:
- self.fatal("satin column: object %s invalid: expected exactly two sub-paths, but there are %s" % (node_id, len(csp)))
-
- if self.get_style("fill") is not None:
- self.fatal("satin column: object %s has a fill (but should not)" % node_id)
-
- if len(self.csp[0]) != len(self.csp[1]):
- self.fatal("satin column: object %s has two paths with an unequal number of points (%s and %s)" % (node_id, len(self.csp[0]), len(self.csp[1])))
-
- def offset_points(pos1, pos2, offset_px):
- # Expand or contract two points about their midpoint. This is
- # useful for pull compensation and insetting underlay.
-
- distance = (pos1 - pos2).length()
-
- if distance < 0.0001:
- # if they're the same point, we don't know which direction
- # to offset in, so we have to just return the points
- return pos1, pos2
-
- # don't contract beyond the midpoint, or we'll start expanding
- if offset_px < -distance / 2.0:
- offset_px = -distance / 2.0
-
- pos1 = pos1 + (pos1 - pos2).unit() * offset_px
- pos2 = pos2 + (pos2 - pos1).unit() * offset_px
-
- return pos1, pos2
-
- def walk(path, start_pos, start_index, distance):
- # Move <distance> pixels along <path>, which is a sequence of line
- # segments defined by points.
-
- # <start_index> is the index of the line segment in <path> that
- # we're currently on. <start_pos> is where along that line
- # segment we are. Return a new position and index.
-
- pos = start_pos
- index = start_index
- last_index = len(path) - 1
- distance_remaining = distance
-
- while True:
- if index >= last_index:
- return pos, last_index
-
- segment_end = path[index + 1]
- segment = segment_end - pos
- segment_length = segment.length()
-
- if segment_length > distance_remaining:
- # our walk ends partway along this segment
- return pos + segment.unit() * distance, index
- else:
- # our walk goes past the end of this segment, so advance
- # one point
- index += 1
- distance_remaining -= segment_length
- pos = segment_end
-
- def walk_paths(self, spacing, offset):
- # Take a bezier segment from each path in turn, and plot out an
- # equal number of points on each bezier. Return the points plotted.
- # The points will be contracted or expanded by offset using
- # offset_points().
-
- points = [[], []]
-
- def add_pair(pos1, pos2):
- pos1, pos2 = offset_points(pos1, pos2, offset)
- points[0].append(pos1)
- points[1].append(pos2)
-
- # We may not be able to fit an even number of zigzags in each pair of
- # beziers. We'll store the remaining bit of the beziers after handling
- # each section.
- remainder_path1 = []
- remainder_path2 = []
-
- for segment1, segment2 in self.flattened_beziers:
- subpath1 = remainder_path1 + segment1
- subpath2 = remainder_path2 + segment2
-
- len1 = shgeo.LineString(subpath1).length
- len2 = shgeo.LineString(subpath2).length
-
- # Base the number of stitches in each section on the _longest_ of
- # the two beziers. Otherwise, things could get too sparse when one
- # side is significantly longer (e.g. when going around a corner).
- # The risk here is that we poke a hole in the fabric if we try to
- # cram too many stitches on the short bezier. The user will need
- # to avoid this through careful construction of paths.
- #
- # TODO: some commercial machine embroidery software compensates by
- # pulling in some of the "inner" stitches toward the center a bit.
-
- # note, this rounds down using integer-division
- num_points = max(len1, len2) / spacing
-
- spacing1 = len1 / num_points
- spacing2 = len2 / num_points
-
- pos1 = subpath1[0]
- index1 = 0
-
- pos2 = subpath2[0]
- index2 = 0
-
- for i in xrange(int(num_points)):
- add_pair(pos1, pos2)
-
- pos1, index1 = walk(subpath1, pos1, index1, spacing1)
- pos2, index2 = walk(subpath2, pos2, index2, spacing2)
-
- if index1 < len(subpath1) - 1:
- remainder_path1 = [pos1] + subpath1[index1 + 1:]
- else:
- remainder_path1 = []
-
- if index2 < len(subpath2) - 1:
- remainder_path2 = [pos2] + subpath2[index2 + 1:]
- else:
- remainder_path2 = []
-
- # We're off by one in the algorithm above, so we need one more
- # pair of points. We also want to add points at the very end to
- # make sure we match the vectors on screen as best as possible.
- # Try to avoid doing both if they're going to stack up too
- # closely.
-
- if remainder_path1:
- end1 = remainder_path1[-1]
- end2 = remainder_path2[-1]
-
- if (end1 - pos1).length() > 0.3 * spacing:
- add_pair(pos1, pos2)
-
- add_pair(end1, end2)
-
- return points
-
- def contour_underlay(self):
- # "contour walk" underlay: do stitches up one side and down the
- # other.
- forward, back = self.walk_paths(self.contour_underlay_stitch_length,
- -self.contour_underlay_inset)
- return Patch(color=self.color, stitches=(forward + list(reversed(back))))
-
- def center_walk(self):
- # Center walk underlay is just a running stitch down and back on the
- # center line between the bezier curves.
-
- # Do it like contour underlay, but inset all the way to the center.
- forward, back = self.walk_paths(self.center_walk_underlay_stitch_len_px,
- -100000)
- return Patch(color=self.color, stitches=(forward + list(reversed(back))))
-
- def zigzag_underlay(self):
- # zigzag underlay, usually done at a much lower density than the
- # satin itself. It looks like this:
- #
- # \/\/\/\/\/\/\/\/\/\/|
- # /\/\/\/\/\/\/\/\/\/\|
- #
- # In combination with the "contour walk" underlay, this is the
- # "German underlay" described here:
- # http://www.mrxstitch.com/underlay-what-lies-beneath-machine-embroidery/
-
- patch = Patch(color=self.color)
-
- sides = self.walk_paths(self.zigzag_underlay_spacing / 2.0,
- -self.zigzag_underlay_inset)
-
- # This organizes the points in each side in the order that they'll be
- # visited.
- sides = [sides[0][::2] + list(reversed(sides[0][1::2])),
- sides[1][1::2] + list(reversed(sides[1][::2]))]
-
- # This fancy bit of iterable magic just repeatedly takes a point
- # from each side in turn.
- for point in chain.from_iterable(izip(*sides)):
- patch.add_stitch(point)
-
- return patch
-
- def satin(self):
- # satin: do a zigzag pattern, alternating between the paths. The
- # zigzag looks like this to make the satin stitches look perpendicular
- # to the column:
- #
- # /|/|/|/|/|/|/|/|
-
- print >> dbg, "satin", self.zigzag_spacing, self.pull_compensation
-
- patch = Patch()
-
- sides = self.walk_paths(self.zigzag_spacing, self.pull_compensation)
-
- # Like in zigzag_underlay(): take a point from each side in turn.
- for point in chain.from_iterable(izip(*sides)):
- patch.add_stitch(point)
-
- return patch
-
- def to_patches(self):
- # Stitch a variable-width satin column, zig-zagging between two paths.
-
- # The algorithm will draw zigzags between each consecutive pair of
- # beziers. The boundary points between beziers serve as "checkpoints",
- # allowing the user to control how the zigzags flow around corners.
-
- # First, verify that we have valid paths.
- self.validate_satin_column()
-
- patches = []
-
- if self.center_walk_underlay:
- patches.append(self.center_walk_underlay)
-
- if self.contour_underlay:
- patches.append(self.contour_underlay())
-
- if self.zigzag_underlay:
- # zigzag underlay comes after contour walk underlay, so that the
- # zigzags sit on the contour walk underlay like rail ties on rails.
- patches.append(self.zigzag_underlay())
-
- patches.append(self.satin())
-
- return patches
-
-
-class Patch:
- def __init__(self, color=None, stitches=None):
- self.color = color
- self.stitches = stitches or []
-
- def __add__(self, other):
- if isinstance(other, Patch):
- return Patch(self.color, self.stitches + other.stitches)
- else:
- raise TypeError("Patch can only be added to another Patch")
-
- def add_stitch(self, stitch):
- self.stitches.append(stitch)
-
- def reverse(self):
- return Patch(self.color, self.stitches[::-1])
-
-
-def patches_to_stitches(patch_list, collapse_len_px=0):
- stitches = []
-
- last_stitch = None
- last_color = None
- for patch in patch_list:
- jump_stitch = True
- for stitch in patch.stitches:
- if last_stitch and last_color == patch.color:
- l = (stitch - last_stitch).length()
- if l <= 0.1:
- # filter out duplicate successive stitches
- jump_stitch = False
- continue
-
- if jump_stitch:
- # consider collapsing jump stitch, if it is pretty short
- if l < collapse_len_px:
- # dbg.write("... collapsed\n")
- jump_stitch = False
-
- # dbg.write("stitch color %s\n" % patch.color)
-
- newStitch = PyEmb.Stitch(stitch.x, stitch.y, patch.color, jump_stitch)
- stitches.append(newStitch)
-
- jump_stitch = False
- last_stitch = stitch
- last_color = patch.color
-
- return stitches
-
-
-def stitches_to_paths(stitches):
- paths = []
- last_color = None
- last_stitch = None
- for stitch in stitches:
- if stitch.jump_stitch:
- if last_color == stitch.color:
- paths.append([None, []])
- if last_stitch is not None:
- paths[-1][1].append(['M', last_stitch.as_tuple()])
- paths[-1][1].append(['L', stitch.as_tuple()])
- last_color = None
- if stitch.color != last_color:
- paths.append([stitch.color, []])
- paths[-1][1].append(['L' if len(paths[-1][1]) > 0 else 'M', stitch.as_tuple()])
- last_color = stitch.color
- last_stitch = stitch
- return paths
-
-
-def emit_inkscape(parent, stitches):
- for color, path in stitches_to_paths(stitches):
- # dbg.write('path: %s %s\n' % (color, repr(path)))
- inkex.etree.SubElement(parent,
- inkex.addNS('path', 'svg'),
- {'style': simplestyle.formatStyle(
- {'stroke': color if color is not None else '#000000',
- 'stroke-width': "0.4",
- 'fill': 'none'}),
- 'd': simplepath.formatPath(path),
- })
-
-
-class Embroider(inkex.Effect):
- def __init__(self, *args, **kwargs):
- inkex.Effect.__init__(self)
- self.OptionParser.add_option("-r", "--row_spacing_mm",
- action="store", type="float",
- dest="row_spacing_mm", default=0.4,
- help="row spacing (mm)")
- self.OptionParser.add_option("-z", "--zigzag_spacing_mm",
- action="store", type="float",
- dest="zigzag_spacing_mm", default=1.0,
- help="zigzag spacing (mm)")
- self.OptionParser.add_option("-l", "--max_stitch_len_mm",
- action="store", type="float",
- dest="max_stitch_length_mm", default=3.0,
- help="max stitch length (mm)")
- self.OptionParser.add_option("--running_stitch_len_mm",
- action="store", type="float",
- dest="running_stitch_length_mm", default=3.0,
- help="running stitch length (mm)")
- self.OptionParser.add_option("-c", "--collapse_len_mm",
- action="store", type="float",
- dest="collapse_length_mm", default=0.0,
- help="max collapse length (mm)")
- self.OptionParser.add_option("-f", "--flatness",
- action="store", type="float",
- dest="flat", default=0.1,
- help="Minimum flatness of the subdivided curves")
- self.OptionParser.add_option("--hide_layers",
- action="store", type="choice",
- choices=["true", "false"],
- dest="hide_layers", default="true",
- help="Hide all other layers when the embroidery layer is generated")
- self.OptionParser.add_option("-O", "--output_format",
- action="store", type="choice",
- choices=["melco", "csv", "gcode"],
- dest="output_format", default="melco",
- help="File output format")
- self.OptionParser.add_option("-P", "--path",
- action="store", type="string",
- dest="path", default=".",
- help="Directory in which to store output file")
- self.OptionParser.add_option("-b", "--max-backups",
- action="store", type="int",
- dest="max_backups", default=5,
- help="Max number of backups of output files to keep.")
- self.OptionParser.add_option("-p", "--pixels_per_mm",
- action="store", type="int",
- dest="pixels_per_mm", default=10,
- help="Number of on-screen pixels per millimeter.")
- self.patches = []
-
- def handle_node(self, node):
- print >> dbg, "handling node", node.get('id'), node.get('tag')
-
- element = EmbroideryElement(node, self.options)
-
- if element.has_style('display') and element.get_style('display') is None:
- return
-
- if node.tag == SVG_DEFS_TAG:
- return
-
- for child in node:
- self.handle_node(child)
-
- if node.tag != SVG_PATH_TAG:
- return
-
- # dbg.write("Node: %s\n"%str((id, etree.tostring(node, pretty_print=True))))
-
- if element.get_boolean_param("satin_column"):
- self.elements.append(SatinColumn(node, self.options))
- else:
- elements = []
-
- if element.get_style("fill"):
- elements.append(Fill(node, self.options))
-
- if element.get_style("stroke"):
- elements.append(Stroke(node, self.options))
-
- if element.get_boolean_param("stroke_first", False):
- elements.reverse()
-
- self.elements.extend(elements)
-
- def get_output_path(self):
- svg_filename = self.document.getroot().get(inkex.addNS('docname', 'sodipodi'))
- csv_filename = svg_filename.replace('.svg', '.csv')
- output_path = os.path.join(self.options.path, csv_filename)
-
- def add_suffix(path, suffix):
- if suffix > 0:
- path = "%s.%s" % (path, suffix)
-
- return path
-
- def move_if_exists(path, suffix=0):
- source = add_suffix(path, suffix)
-
- if suffix >= self.options.max_backups:
- return
-
- dest = add_suffix(path, suffix + 1)
-
- if os.path.exists(source):
- move_if_exists(path, suffix + 1)
- os.rename(source, dest)
-
- move_if_exists(output_path)
-
- return output_path
-
- def hide_layers(self):
- for g in self.document.getroot().findall(SVG_GROUP_TAG):
- if g.get(inkex.addNS("groupmode", "inkscape")) == "layer":
- g.set("style", "display:none")
-
- def effect(self):
- # Printing anything other than a valid SVG on stdout blows inkscape up.
- old_stdout = sys.stdout
- sys.stdout = sys.stderr
-
- self.patch_list = []
-
- print >> dbg, "starting nodes: %s\n" % time.time()
- dbg.flush()
-
- self.elements = []
-
- if self.selected:
- # be sure to visit selected nodes in the order they're stacked in
- # the document
- for node in self.document.getroot().iter():
- if node.get("id") in self.selected:
- self.handle_node(node)
- else:
- self.handle_node(self.document.getroot())
-
- print >> dbg, "finished nodes: %s" % time.time()
- dbg.flush()
-
- if not self.elements:
- if self.selected:
- inkex.errormsg("No embroiderable paths selected.")
- else:
- inkex.errormsg("No embroiderable paths found in document.")
- inkex.errormsg("Tip: use Path -> Object to Path to convert non-paths before embroidering.")
- return
-
- if self.options.hide_layers:
- self.hide_layers()
-
- patches = chain.from_iterable(element.to_patches() for element in self.elements)
- stitches = patches_to_stitches(patches, self.options.collapse_length_mm * self.options.pixels_per_mm)
- emb = PyEmb.Embroidery(stitches, self.options.pixels_per_mm)
- emb.export(self.get_output_path(), self.options.output_format)
-
- new_layer = inkex.etree.SubElement(self.document.getroot(), SVG_GROUP_TAG, {})
- new_layer.set('id', self.uniqueId("embroidery"))
- new_layer.set(inkex.addNS('label', 'inkscape'), 'Embroidery')
- new_layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer')
-
- emit_inkscape(new_layer, stitches)
-
- sys.stdout = old_stdout
-
-if __name__ == '__main__':
- sys.setrecursionlimit(100000)
- e = Embroider()
- e.affect()
- dbg.flush()
-
-dbg.close()