summaryrefslogtreecommitdiff
path: root/lib/stitches/ConnectAndSamplePattern.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/stitches/ConnectAndSamplePattern.py')
-rw-r--r--lib/stitches/ConnectAndSamplePattern.py477
1 files changed, 477 insertions, 0 deletions
diff --git a/lib/stitches/ConnectAndSamplePattern.py b/lib/stitches/ConnectAndSamplePattern.py
new file mode 100644
index 00000000..21a56cd6
--- /dev/null
+++ b/lib/stitches/ConnectAndSamplePattern.py
@@ -0,0 +1,477 @@
+from shapely.geometry.polygon import LineString, LinearRing
+from shapely.geometry import Point, MultiPoint, linestring
+from shapely.ops import nearest_points, polygonize
+from collections import namedtuple
+from depq import DEPQ
+import math
+from ..stitches import LineStringSampling
+from ..stitches import PointTransfer
+from ..stitches import constants
+
+nearest_neighbor_tuple = namedtuple('nearest_neighbor_tuple', ['nearest_point_parent', 'nearest_point_child', 'projected_distance_parent', 'child_node'])
+
+
+# Cuts a closed line so that the new closed line starts at the point with "distance" to the beginning of the old line.
+def cut(line, distance):
+ if distance <= 0.0 or distance >= line.length:
+ return [LineString(line)]
+ coords = list(line.coords)
+ for i, p in enumerate(coords):
+ if i > 0 and p == coords[0]:
+ pd = line.length
+ else:
+ pd = line.project(Point(p))
+ if pd == distance:
+ if coords[0] == coords[-1]:
+ return LineString(coords[i:]+coords[1:i+1])
+ else:
+ return LineString(coords[i:]+coords[:i])
+ if pd > distance:
+ cp = line.interpolate(distance)
+ if coords[0] == coords[-1]:
+ return LineString([(cp.x, cp.y)] + coords[i:]+coords[1:i]+[(cp.x, cp.y)])
+ else:
+ return LineString([(cp.x, cp.y)] + coords[i:]+coords[:i])
+
+
+#Takes the offsetted curves organized as tree, connects and samples them.
+#Strategy: A connection from parent to child is made where both curves come closest together.
+#Input:
+#-tree: contains the offsetted curves in a hierachical organized data structure.
+#-used_offset: used offset when the offsetted curves were generated
+#-stitch_distance: maximum allowed distance between two points after sampling
+#-close_point: defines the beginning point for stitching (stitching starts always from the undisplaced curve)
+#-offset_by_half: If true the resulting points are interlaced otherwise not.
+#Returnvalues:
+#-All offsetted curves connected to one line and sampled with points obeying stitch_distance and offset_by_half
+#-Tag (origin) of each point to analyze why a point was placed at this position
+def connect_raster_tree_nearest_neighbor(tree, used_offset, stitch_distance, close_point, offset_by_half):
+
+ current_coords = tree.val
+ abs_offset = abs(used_offset)
+ result_coords = []
+ result_coords_origin = []
+
+ # We cut the current item so that its index 0 is closest to close_point
+ start_distance = tree.val.project(close_point)
+ if start_distance > 0:
+ current_coords = cut(current_coords, start_distance)
+ tree.val = current_coords
+
+ if not tree.transferred_point_priority_deque.is_empty():
+ new_DEPQ = DEPQ(iterable=None, maxlen=None)
+ for item,priority in tree.transferred_point_priority_deque:
+ new_DEPQ.insert(item, math.fmod(
+ priority-start_distance+current_coords.length, current_coords.length))
+ tree.transferred_point_priority_deque = new_DEPQ
+ #print("Gecutted")
+
+ stitching_direction = 1
+ # This list should contain a tuple of nearest points between the current geometry
+ # and the subgeometry, the projected distance along the current geometry,
+ # and the belonging subtree node
+ nearest_points_list = []
+
+ for subnode in tree.children:
+ point_parent, point_child = nearest_points(current_coords, subnode.val)
+ proj_distance = current_coords.project(point_parent)
+ nearest_points_list.append(nearest_neighbor_tuple(nearest_point_parent = point_parent,
+ nearest_point_child = point_child,
+ projected_distance_parent = proj_distance,
+ child_node=subnode))
+ nearest_points_list.sort(reverse=False, key=lambda tup: tup.projected_distance_parent)
+
+ if nearest_points_list:
+ start_distance = min(abs_offset*constants.factor_offset_starting_points, nearest_points_list[0].projected_distance_parent)
+ end_distance = max(current_coords.length-abs_offset*constants.factor_offset_starting_points, nearest_points_list[-1].projected_distance_parent)
+ else:
+ start_distance = abs_offset*constants.factor_offset_starting_points
+ end_distance = current_coords.length-abs_offset*constants.factor_offset_starting_points
+
+ own_coords, own_coords_origin = LineStringSampling.raster_line_string_with_priority_points(current_coords, start_distance, # We add/subtract an offset to not sample the same point again (avoid double points for start and end)
+ end_distance, stitch_distance, stitching_direction, tree.transferred_point_priority_deque, abs_offset)
+ assert(len(own_coords) == len(own_coords_origin))
+ own_coords_origin[0] = LineStringSampling.PointSource.ENTER_LEAVING_POINT
+ own_coords_origin[-1] = LineStringSampling.PointSource.ENTER_LEAVING_POINT
+
+ #tree.val = LineString(own_coords)
+ #tree.pointsourcelist = own_coords_origin
+ tree.stitching_direction = stitching_direction
+ tree.already_rastered = True
+
+ #Next we need to transfer our rastered points to siblings and childs
+ to_transfer_point_list = []
+ to_transfer_point_list_origin = []
+ for k in range(1, len(own_coords)-1): #Do not take the first and the last since they are ENTER_LEAVING_POINT points for sure
+ # if abs(temp[k][0]-5.25) < 0.5 and abs(temp[k][1]-42.9) < 0.5:
+ # print("HIER gefunden!")
+ if (not offset_by_half and own_coords_origin[k] == LineStringSampling.PointSource.EDGE_NEEDED):
+ continue
+ if own_coords_origin[k] == LineStringSampling.PointSource.ENTER_LEAVING_POINT or own_coords_origin[k] == LineStringSampling.PointSource.FORBIDDEN_POINT:
+ continue
+ to_transfer_point_list.append(Point(own_coords[k]))
+ point_origin = own_coords_origin[k]
+ to_transfer_point_list_origin.append(point_origin)
+
+
+ #since the projection is only in ccw direction towards inner we need to use "-used_offset" for stitching_direction==-1
+ PointTransfer.transfer_points_to_surrounding(tree,stitching_direction*used_offset,offset_by_half,stitch_distance,
+ to_transfer_point_list,to_transfer_point_list_origin,overnext_neighbor=False,
+ transfer_forbidden_points=False,transfer_to_parent=False,transfer_to_sibling=True,transfer_to_child=True)
+
+
+ #We transfer also to the overnext child to get a more straight arrangement of points perpendicular to the stitching lines
+ if offset_by_half:
+ PointTransfer.transfer_points_to_surrounding(tree,stitching_direction*used_offset,False,stitch_distance,
+ to_transfer_point_list,to_transfer_point_list_origin,overnext_neighbor=True,
+ transfer_forbidden_points=False,transfer_to_parent=False,transfer_to_sibling=True,transfer_to_child=True)
+
+ if not nearest_points_list:
+ #If there is no child (inner geometry) we can simply take our own rastered coords as result
+ result_coords = own_coords
+ result_coords_origin = own_coords_origin
+ else:
+ #There are childs so we need to merge their coordinates with our own rastered coords
+
+ #To create a closed ring
+ own_coords.append(own_coords[0])
+ own_coords_origin.append(own_coords_origin[0])
+
+
+ #own_coords does not start with current_coords but has an offset (see call of raster_line_string_with_priority_points)
+ total_distance = start_distance
+ current_item_index = 0
+ result_coords = [own_coords[0]]
+ result_coords_origin = [LineStringSampling.PointSource.ENTER_LEAVING_POINT]
+ for i in range(1, len(own_coords)):
+ next_distance = math.sqrt((own_coords[i][0]-own_coords[i-1][0])**2 +
+ (own_coords[i][1]-own_coords[i-1][1])**2)
+ while (current_item_index < len(nearest_points_list) and
+ total_distance+next_distance+constants.eps > nearest_points_list[current_item_index].projected_distance_parent):
+
+ item = nearest_points_list[current_item_index]
+ child_coords, child_coords_origin = connect_raster_tree_nearest_neighbor(
+ item.child_node, used_offset, stitch_distance, item.nearest_point_child, offset_by_half)
+
+ delta = item.nearest_point_parent.distance(Point(own_coords[i-1]))
+ if delta > abs_offset*constants.factor_offset_starting_points:
+ result_coords.append(item.nearest_point_parent.coords[0])
+ result_coords_origin.append(LineStringSampling.PointSource.ENTER_LEAVING_POINT)
+ # reversing avoids crossing when entering and leaving the child segment
+ result_coords.extend(child_coords[::-1])
+ result_coords_origin.extend(child_coords_origin[::-1])
+
+
+ #And here we calculate the point for the leaving
+ delta = item.nearest_point_parent.distance(Point(own_coords[i]))
+ if current_item_index < len(nearest_points_list)-1:
+ delta = min(delta, abs(
+ nearest_points_list[current_item_index+1].projected_distance_parent-item.projected_distance_parent))
+
+ if delta > abs_offset*constants.factor_offset_starting_points:
+ result_coords.append(current_coords.interpolate(
+ item.projected_distance_parent+abs_offset*constants.factor_offset_starting_points).coords[0])
+ result_coords_origin.append(LineStringSampling.PointSource.ENTER_LEAVING_POINT)
+
+ current_item_index += 1
+ if i < len(own_coords)-1:
+ if(Point(result_coords[-1]).distance(Point(own_coords[i])) > abs_offset*constants.factor_offset_remove_points):
+ result_coords.append(own_coords[i])
+ result_coords_origin.append(own_coords_origin[i])
+
+ # Since current_coords and temp are rastered differently there accumulate errors regarding the current distance.
+ # Since a projection of each point in temp would be very time consuming we project only every n-th point which resets the accumulated error every n-th point.
+ if i % 20 == 0:
+ total_distance = current_coords.project(Point(own_coords[i]))
+ else:
+ total_distance += next_distance
+
+ assert(len(result_coords) == len(result_coords_origin))
+ return result_coords, result_coords_origin
+
+#Takes a line and calculates the nearest distance along this line to enter the next_line
+#Input:
+#-travel_line: The "parent" line for which the distance should be minimized to enter next_line
+#-next_line: contains the next_line which need to be entered
+#-thresh: The distance between travel_line and next_line needs to below thresh to be a valid point for entering
+#Output:
+#-tuple - the tuple structure is: (nearest point in travel_line, nearest point in next_line)
+def get_nearest_points_closer_than_thresh(travel_line, next_line,thresh):
+ point_list = list(MultiPoint(travel_line.coords))
+
+ if point_list[0].distance(next_line) < thresh:
+ return nearest_points(point_list[0], next_line)
+
+ for i in range(len(point_list)-1):
+ line_segment = LineString([point_list[i], point_list[i+1]])
+ result = nearest_points(line_segment,next_line)
+
+ if result[0].distance(result[1])< thresh:
+ return result
+ line_segment = LineString([point_list[-1], point_list[0]])
+ result = nearest_points(line_segment,next_line)
+
+ if result[0].distance(result[1])< thresh:
+ return result
+ else:
+ return None
+
+
+#Takes a line and calculates the nearest distance along this line to enter the childs in children_list
+#The method calculates the distances along the line and along the reversed line to find the best direction
+#which minimizes the overall distance for all childs.
+#Input:
+#-travel_line: The "parent" line for which the distance should be minimized to enter the childs
+#-children_list: contains the childs of travel_line which need to be entered
+#-threshold: The distance between travel_line and a child needs to below threshold to be a valid point for entering
+#-preferred_direction: Put a bias on the desired travel direction along travel_line. If equals zero no bias is applied.
+# preferred_direction=1 means we prefer the direction of travel_line; preferred_direction=-1 means we prefer the opposite direction.
+#Output:
+#-stitching direction for travel_line
+#-list of tuples (one tuple per child). The tuple structure is: ((nearest point in travel_line, nearest point in child), distance along travel_line, belonging child)
+def create_nearest_points_list(travel_line, children_list, threshold, threshold_hard,preferred_direction=0):
+ result_list_in_order = []
+ result_list_reversed_order = []
+
+ travel_line_reversed = LinearRing(travel_line.coords[::-1])
+
+ weight_in_order = 0
+ weight_reversed_order = 0
+ for child in children_list:
+ result = get_nearest_points_closer_than_thresh(travel_line, child.val, threshold)
+ if result == None: #where holes meet outer borders a distance up to 2*used offset can arise
+ result = get_nearest_points_closer_than_thresh(travel_line, child.val, threshold_hard)
+ assert(result != None)
+ proj = travel_line.project(result[0])
+ weight_in_order += proj
+ result_list_in_order.append(nearest_neighbor_tuple(nearest_point_parent = result[0],
+ nearest_point_child = result[1],
+ projected_distance_parent = proj,
+ child_node = child))
+
+ result = get_nearest_points_closer_than_thresh(travel_line_reversed, child.val, threshold)
+ if result == None: #where holes meet outer borders a distance up to 2*used offset can arise
+ result = get_nearest_points_closer_than_thresh(travel_line_reversed, child.val, threshold_hard)
+ assert(result != None)
+ proj = travel_line_reversed.project(result[0])
+ weight_reversed_order += proj
+ result_list_reversed_order.append(nearest_neighbor_tuple(nearest_point_parent = result[0],
+ nearest_point_child = result[1],
+ projected_distance_parent = proj,
+ child_node = child))
+
+ if preferred_direction == 1:
+ weight_in_order=min(weight_in_order/2, max(0, weight_in_order-10*threshold))
+ if weight_in_order == weight_reversed_order:
+ return (1, result_list_in_order)
+ elif preferred_direction == -1:
+ weight_reversed_order=min(weight_reversed_order/2, max(0, weight_reversed_order-10*threshold))
+ if weight_in_order == weight_reversed_order:
+ return (-1, result_list_reversed_order)
+
+
+ if weight_in_order < weight_reversed_order:
+ return (1, result_list_in_order)
+ else:
+ return (-1, result_list_reversed_order)
+
+
+def calculate_replacing_middle_point(line_segment, abs_offset,max_stich_distance):
+ angles = LineStringSampling.calculate_line_angles(line_segment)
+ if angles[1] < abs_offset*constants.limiting_angle_straight:
+ if line_segment.length < max_stich_distance:
+ return None
+ else:
+ return line_segment.interpolate(line_segment.length-max_stich_distance).coords[0]
+ else:
+ return line_segment.coords[1]
+
+#Takes the offsetted curves organized as tree, connects and samples them.
+#Strategy: A connection from parent to child is made as fast as possible to reach the innermost child as fast as possible in order
+# to stich afterwards from inner to outer.
+#Input:
+#-tree: contains the offsetted curves in a hierachical organized data structure.
+#-used_offset: used offset when the offsetted curves were generated
+#-stitch_distance: maximum allowed distance between two points after sampling
+#-close_point: defines the beginning point for stitching (stitching starts always from the undisplaced curve)
+#-offset_by_half: If true the resulting points are interlaced otherwise not.
+#Returnvalues:
+#-All offsetted curves connected to one line and sampled with points obeying stitch_distance and offset_by_half
+#-Tag (origin) of each point to analyze why a point was placed at this position
+def connect_raster_tree_from_inner_to_outer(tree, used_offset, stitch_distance, close_point, offset_by_half):
+
+ current_coords = tree.val
+ abs_offset = abs(used_offset)
+ result_coords = []
+ result_coords_origin = []
+
+ start_distance = tree.val.project(close_point)
+ # We cut the current path so that its index 0 is closest to close_point
+ if start_distance > 0:
+ current_coords = cut(current_coords, start_distance)
+ tree.val = current_coords
+
+ if not tree.transferred_point_priority_deque.is_empty():
+ new_DEPQ = DEPQ(iterable=None, maxlen=None)
+ for item, priority in tree.transferred_point_priority_deque:
+ new_DEPQ.insert(item, math.fmod(
+ priority-start_distance+current_coords.length, current_coords.length))
+ tree.transferred_point_priority_deque = new_DEPQ
+
+ #We try to use always the opposite stitching direction with respect to the parent to avoid crossings when entering and leaving the child
+ parent_stitching_direction = -1
+ if tree.parent != None:
+ parent_stitching_direction = tree.parent.stitching_direction
+
+ #find the nearest point in current_coords and its children and sort it along the stitching direction
+ stitching_direction, nearest_points_list = create_nearest_points_list(current_coords, tree.children, 1.5*abs_offset,2.05*abs_offset,parent_stitching_direction)
+ nearest_points_list.sort(reverse=False, key=lambda tup: tup.projected_distance_parent)
+
+ #Have a small offset for the starting and ending to avoid double points at start and end point (since the paths are closed rings)
+ if nearest_points_list:
+ start_offset = min(abs_offset*constants.factor_offset_starting_points, nearest_points_list[0].projected_distance_parent)
+ end_offset = max(current_coords.length-abs_offset*constants.factor_offset_starting_points, nearest_points_list[-1].projected_distance_parent)
+ else:
+ start_offset = abs_offset*constants.factor_offset_starting_points
+ end_offset = current_coords.length-abs_offset*constants.factor_offset_starting_points
+
+
+ if stitching_direction == 1:
+ own_coords, own_coords_origin = LineStringSampling.raster_line_string_with_priority_points(current_coords, start_offset, # We add start_offset to not sample the same point again (avoid double points for start and end)
+ end_offset, stitch_distance, stitching_direction, tree.transferred_point_priority_deque, abs_offset)
+ else:
+ own_coords, own_coords_origin = LineStringSampling.raster_line_string_with_priority_points(current_coords, current_coords.length-start_offset, # We subtract start_offset to not sample the same point again (avoid double points for start and end)
+ current_coords.length-end_offset, stitch_distance, stitching_direction, tree.transferred_point_priority_deque, abs_offset)
+ current_coords.coords = current_coords.coords[::-1]
+
+ #Adjust the points origin for start and end (so that they might not be transferred to childs)
+ #if own_coords_origin[-1] != LineStringSampling.PointSource.HARD_EDGE:
+ # own_coords_origin[-1] = LineStringSampling.PointSource.ENTER_LEAVING_POINT
+ #if own_coords_origin[0] != LineStringSampling.PointSource.HARD_EDGE:
+ # own_coords_origin[0] = LineStringSampling.PointSource.ENTER_LEAVING_POINT
+ assert(len(own_coords) == len(own_coords_origin))
+
+ #tree.val = LineString(own_coords)
+ #tree.pointsourcelist = own_coords_origin
+ tree.stitching_direction = stitching_direction
+ tree.already_rastered = True
+
+
+ to_transfer_point_list = []
+ to_transfer_point_list_origin = []
+ for k in range(0, len(own_coords)): #TODO: maybe do not take the first and the last since they are ENTER_LEAVING_POINT points for sure
+ if (not offset_by_half and own_coords_origin[k] == LineStringSampling.PointSource.EDGE_NEEDED or own_coords_origin[k] == LineStringSampling.PointSource.FORBIDDEN_POINT):
+ continue
+ if own_coords_origin[k] == LineStringSampling.PointSource.ENTER_LEAVING_POINT:
+ continue
+ to_transfer_point_list.append(Point(own_coords[k]))
+ to_transfer_point_list_origin.append(own_coords_origin[k])
+
+ assert(len(to_transfer_point_list) == len(to_transfer_point_list_origin))
+
+
+ #Next we need to transfer our rastered points to siblings and childs
+
+
+ #since the projection is only in ccw direction towards inner we need to use "-used_offset" for stitching_direction==-1
+ PointTransfer.transfer_points_to_surrounding(tree,stitching_direction*used_offset,offset_by_half,stitch_distance,
+ to_transfer_point_list,to_transfer_point_list_origin,overnext_neighbor=False,
+ transfer_forbidden_points=False,transfer_to_parent=False,transfer_to_sibling=True,transfer_to_child=True)
+
+
+ #We transfer also to the overnext child to get a more straight arrangement of points perpendicular to the stitching lines
+ if offset_by_half:
+ PointTransfer.transfer_points_to_surrounding(tree,stitching_direction*used_offset,False,stitch_distance,
+ to_transfer_point_list,to_transfer_point_list_origin,overnext_neighbor=True,
+ transfer_forbidden_points=False,transfer_to_parent=False,transfer_to_sibling=True,transfer_to_child=True)
+
+ if not nearest_points_list:
+ #If there is no child (inner geometry) we can simply take our own rastered coords as result
+ result_coords = own_coords
+ result_coords_origin = own_coords_origin
+ else:
+ #There are childs so we need to merge their coordinates with our own rastered coords
+
+ #Create a closed ring for the following code
+ own_coords.append(own_coords[0])
+ own_coords_origin.append(own_coords_origin[0])
+
+ # own_coords does not start with current_coords but has an offset (see call of raster_line_string_with_priority_points)
+ total_distance = start_offset
+
+ current_item_index = 0
+ result_coords = [own_coords[0]]
+ result_coords_origin = [own_coords_origin[0]]
+
+ for i in range(1, len(own_coords)):
+ next_distance = math.sqrt((own_coords[i][0]-own_coords[i-1][0])**2 +
+ (own_coords[i][1]-own_coords[i-1][1])**2)
+ while (current_item_index < len(nearest_points_list) and
+ total_distance+next_distance+constants.eps > nearest_points_list[current_item_index].projected_distance_parent):
+ #The current and the next point in own_coords enclose the nearest point tuple between this geometry and the child geometry.
+ #Hence we need to insert the child geometry points here before the next point of own_coords.
+ item = nearest_points_list[current_item_index]
+ child_coords, child_coords_origin = connect_raster_tree_from_inner_to_outer(
+ item.child_node, used_offset, stitch_distance, item.nearest_point_child, offset_by_half)
+
+ #Imagine the nearest point of the child is within a long segment of the parent. Without additonal points
+ #on the parent side this would cause noticeable deviations. Hence we add here points shortly before and after
+ #the entering of the child to have only minor deviations to the desired shape.
+ #Here is the point for the entering:
+ if(Point(result_coords[-1]).distance(item.nearest_point_parent) > constants.factor_offset_starting_points*abs_offset):
+ result_coords.append(item.nearest_point_parent.coords[0])
+ result_coords_origin.append(LineStringSampling.PointSource.ENTER_LEAVING_POINT)
+ #if (abs(result_coords[-1][0]-61.7) < 0.2 and abs(result_coords[-1][1]-105.1) < 0.2):
+ # print("HIIER FOUNDED3")
+
+ #Check whether the number of points of the connecting lines from child to child can be reduced
+ if len(child_coords) > 1:
+ point = calculate_replacing_middle_point(LineString([result_coords[-1],child_coords[0],child_coords[1]]),abs_offset,stitch_distance)
+ #if (abs(result_coords[-1][0]-8.9) < 0.2 and abs(result_coords[-1][1]-8.9) < 0.2):
+ # print("HIIER FOUNDED3")
+ if point != None:
+ #if (abs(point[0]-17.8) < 0.2 and abs(point[1]-17.8) < 0.2):
+ # print("HIIER FOUNDED3")
+ result_coords.append(point)
+ result_coords_origin.append(child_coords_origin[0])
+
+ result_coords.extend(child_coords[1:])
+ result_coords_origin.extend(child_coords_origin[1:])
+ else:
+ result_coords.extend(child_coords)
+ result_coords_origin.extend(child_coords_origin)
+
+ #And here is the point for the leaving of the child (distance to the own following point should not be too large)
+ delta = item.nearest_point_parent.distance(Point(own_coords[i]))
+ if current_item_index < len(nearest_points_list)-1:
+ delta = min(delta, abs(
+ nearest_points_list[current_item_index+1].projected_distance_parent-item.projected_distance_parent))
+
+ if delta > constants.factor_offset_starting_points*abs_offset:
+ result_coords.append(current_coords.interpolate(
+ item.projected_distance_parent+2*constants.factor_offset_starting_points*abs_offset).coords[0])
+ result_coords_origin.append(LineStringSampling.PointSource.ENTER_LEAVING_POINT)
+ #check whether this additional point makes the last point of the child unnecessary
+ point = calculate_replacing_middle_point(LineString([result_coords[-3],result_coords[-2],result_coords[-1]]),abs_offset,stitch_distance)
+ if point == None:
+ result_coords.pop(-2)
+ result_coords_origin.pop(-2)
+
+ #if (abs(result_coords[-1][0]-61.7) < 0.2 and abs(result_coords[-1][1]-105.1) < 0.2):
+ # print("HIIER FOUNDED3")
+
+ current_item_index += 1
+ if i < len(own_coords)-1:
+ if(Point(result_coords[-1]).distance(Point(own_coords[i])) > abs_offset*constants.factor_offset_remove_points):
+ result_coords.append(own_coords[i])
+ result_coords_origin.append(own_coords_origin[i])
+
+ # Since current_coords and own_coords are rastered differently there accumulate errors regarding the current distance.
+ # Since a projection of each point in own_coords would be very time consuming we project only every n-th point which resets the accumulated error every n-th point.
+ if i % 20 == 0:
+ total_distance = current_coords.project(Point(own_coords[i]))
+ else:
+ total_distance += next_distance
+
+ assert(len(result_coords) == len(result_coords_origin))
+ return result_coords, result_coords_origin