summaryrefslogtreecommitdiff
path: root/lib/stitches/LineStringSampling.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/stitches/LineStringSampling.py')
-rw-r--r--lib/stitches/LineStringSampling.py502
1 files changed, 502 insertions, 0 deletions
diff --git a/lib/stitches/LineStringSampling.py b/lib/stitches/LineStringSampling.py
new file mode 100644
index 00000000..434c6bbf
--- /dev/null
+++ b/lib/stitches/LineStringSampling.py
@@ -0,0 +1,502 @@
+from sys import path
+from shapely.geometry.polygon import LineString
+from shapely.geometry import Point
+from shapely.ops import substring
+import math
+import numpy as np
+from enum import IntEnum
+from ..stitches import constants
+from ..stitches import PointTransfer
+
+#Used to tag the origin of a rastered point
+class PointSource(IntEnum):
+ #MUST_USE = 0 # Legacy
+ REGULAR_SPACING = 1 # introduced to not exceed maximal stichting distance
+ #INITIAL_RASTERING = 2 #Legacy
+ EDGE_NEEDED = 3 # point which must be stitched to avoid to large deviations to the desired path
+ #NOT_NEEDED = 4 #Legacy
+ #ALREADY_TRANSFERRED = 5 #Legacy
+ #ADDITIONAL_TRACKING_POINT_NOT_NEEDED = 6 #Legacy
+ #EDGE_RASTERING_ALLOWED = 7 #Legacy
+ #EDGE_PREVIOUSLY_SHIFTED = 8 #Legacy
+ ENTER_LEAVING_POINT = 9 #Whether this point is used to enter or leave a child
+ SOFT_EDGE_INTERNAL = 10 #If the angle at a point is <= constants.limiting_angle this point is marked as SOFT_EDGE
+ HARD_EDGE_INTERNAL = 11 #If the angle at a point is > constants.limiting_angle this point is marked as HARD_EDGE (HARD_EDGES will always be stitched)
+ PROJECTED_POINT = 12 #If the point was created by a projection (transferred point) of a neighbor it is marked as PROJECTED_POINT
+ REGULAR_SPACING_INTERNAL = 13 # introduced to not exceed maximal stichting distance
+ #FORBIDDEN_POINT_INTERNAL=14 #Legacy
+ SOFT_EDGE = 15 #If the angle at a point is <= constants.limiting_angle this point is marked as SOFT_EDGE
+ HARD_EDGE = 16 #If the angle at a point is > constants.limiting_angle this point is marked as HARD_EDGE (HARD_EDGES will always be stitched)
+ FORBIDDEN_POINT=17 #Only relevant for desired interlacing - non-shifted point positions at the next neighbor are marked as forbidden
+ REPLACED_FORBIDDEN_POINT=18 #If one decides to avoid forbidden points new points to the left and to the right as replacement are created
+ DIRECT = 19 #Calculated by next neighbor projection
+ OVERNEXT = 20 #Calculated by overnext neighbor projection
+
+
+# Calculates the angles between adjacent edges at each interior point
+#Note that the first and last values in the return array are zero since for the boundary points no angle calculations were possible
+def calculate_line_angles(line):
+ Angles = np.zeros(len(line.coords))
+ for i in range(1, len(line.coords)-1):
+ vec1 = np.array(line.coords[i])-np.array(line.coords[i-1])
+ vec2 = np.array(line.coords[i+1])-np.array(line.coords[i])
+ vec1length = np.linalg.norm(vec1)
+ vec2length = np.linalg.norm(vec2)
+ #if vec1length <= 0:
+ # print("HIER FEHLER")
+
+ #if vec2length <=0:
+ # print("HIER FEHLEr")
+ assert(vec1length >0)
+ assert(vec2length >0)
+ scalar_prod=np.dot(vec1, vec2)/(vec1length*vec2length)
+ scalar_prod = min(max(scalar_prod,-1),1)
+ #if scalar_prod > 1.0:
+ # scalar_prod = 1.0
+ #elif scalar_prod < -1.0:
+ # scalar_prod = -1.0
+ Angles[i] = math.acos(scalar_prod)
+ return Angles
+
+#Rasters a line between start_distance and end_distance.
+#Input:
+#-line: The line to be rastered
+#-start_distance: The distance along the line from which the rastering should start
+#-end_distance: The distance along the line until which the rastering should be done
+#-maxstitch_distance: The maximum allowed stitch distance
+#-stitching_direction: =1 is stitched along line direction, =-1 if stitched in reversed order. Note that
+# start_distance > end_distance for stitching_direction = -1
+#-must_use_points_deque: deque with projected points on line from its neighbors. An item of the deque
+#is setup as follows: ((projected point on line, LineStringSampling.PointSource), priority=distance along line)
+#index of point_origin is the index of the point in the neighboring line
+#-abs_offset: used offset between to offsetted curves
+#Output:
+#-List of tuples with the rastered point coordinates
+#-List which defines the point origin for each point according to the PointSource enum.
+def raster_line_string_with_priority_points(line, start_distance, end_distance, maxstitch_distance, stitching_direction, must_use_points_deque, abs_offset):
+ if (abs(end_distance-start_distance) < constants.line_lengh_seen_as_one_point):
+ return [line.interpolate(start_distance).coords[0]], [PointSource.HARD_EDGE]
+
+ assert (stitching_direction == -1 and start_distance >= end_distance) or (
+ stitching_direction == 1 and start_distance <= end_distance)
+
+ deque_points = list(must_use_points_deque)
+
+ linecoords = line.coords
+
+ if start_distance > end_distance:
+ start_distance, end_distance = line.length - \
+ start_distance, line.length-end_distance
+ linecoords = linecoords[::-1]
+ for i in range(len(deque_points)):
+ deque_points[i] = (deque_points[i][0],
+ line.length-deque_points[i][1])
+ else:
+ deque_points = deque_points[::-1] #Since points with highest priority (=distance along line) are first (descending sorted)
+
+ # Remove all points from the deque which do not fall in the segment [start_distance; end_distance]
+ while (len(deque_points) > 0 and deque_points[0][1] <= start_distance+min(maxstitch_distance/20, constants.point_spacing_to_be_considered_equal)):
+ deque_points.pop(0)
+ while (len(deque_points) > 0 and deque_points[-1][1] >= end_distance-min(maxstitch_distance/20, constants.point_spacing_to_be_considered_equal)):
+ deque_points.pop()
+
+
+# Ordering in priority queue:
+# (point, LineStringSampling.PointSource), priority)
+ aligned_line = LineString(linecoords)
+ path_coords = substring(aligned_line,
+ start_distance, end_distance)
+
+ #aligned line is a line without doubled points. I had the strange situation in which the offset "start_distance" from the line beginning resulted in a starting point which was
+ # already present in aligned_line causing a doubled point. A double point is not allowed in the following calculations so we need to remove it:
+ if abs(path_coords.coords[0][0]-path_coords.coords[1][0])<constants.eps and abs(path_coords.coords[0][1]-path_coords.coords[1][1])<constants.eps:
+ path_coords.coords = path_coords.coords[1:]
+ if abs(path_coords.coords[-1][0]-path_coords.coords[-2][0])<constants.eps and abs(path_coords.coords[-1][1]-path_coords.coords[-2][1])<constants.eps:
+ path_coords.coords = path_coords.coords[:-1]
+
+ angles = calculate_line_angles(path_coords)
+
+ current_distance = start_distance
+
+ #Next we merge the line points and the projected (deque) points into one list
+ merged_point_list = []
+ dq_iter = 0
+ for point,angle in zip(path_coords.coords,angles):
+ #if abs(point[0]-40.4) < 0.2 and abs(point[1]-2.3)< 0.2:
+ # print("GEFUNDEN")
+ current_distance = start_distance+path_coords.project(Point(point))
+ while dq_iter < len(deque_points) and deque_points[dq_iter][1] < current_distance:
+ #We want to avoid setting points at soft edges close to forbidden points
+ if deque_points[dq_iter][0].point_source == PointSource.FORBIDDEN_POINT:
+ #Check whether a previous added point is a soft edge close to the forbidden point
+ if (merged_point_list[-1][0].point_source == PointSource.SOFT_EDGE_INTERNAL and
+ abs(merged_point_list[-1][1]-deque_points[dq_iter][1] < abs_offset*constants.factor_offset_forbidden_point)):
+ item = merged_point_list.pop()
+ merged_point_list.append((PointTransfer.projected_point_tuple(point=item[0].point, point_source=\
+ PointSource.FORBIDDEN_POINT),item[1]))
+ else:
+ merged_point_list.append(deque_points[dq_iter])
+ dq_iter+=1
+ #Check whether the current point is close to a forbidden point
+ if (dq_iter < len(deque_points) and
+ deque_points[dq_iter-1][0].point_source == PointSource.FORBIDDEN_POINT and
+ angle < constants.limiting_angle and
+ abs(deque_points[dq_iter-1][1]-current_distance) < abs_offset*constants.factor_offset_forbidden_point):
+ point_source = PointSource.FORBIDDEN_POINT
+ else:
+ if angle < constants.limiting_angle:
+ point_source = PointSource.SOFT_EDGE_INTERNAL
+ else:
+ point_source = PointSource.HARD_EDGE_INTERNAL
+ merged_point_list.append((PointTransfer.projected_point_tuple(point=Point(point), point_source=point_source),current_distance))
+
+ result_list = [merged_point_list[0]]
+
+ #General idea: Take one point of merged_point_list after another into the current segment until this segment is not simplified to a straight line by shapelys simplify method.
+ #Then, look at the points within this segment and choose the best fitting one (HARD_EDGE > OVERNEXT projected point > DIRECT projected point) as termination of this segment
+ # and start point for the next segment (so we do not always take the maximum possible length for a segment)
+ segment_start_index = 0
+ segment_end_index = 1
+ forbidden_point_list = []
+ while segment_end_index < len(merged_point_list):
+ #if abs(merged_point_list[segment_end_index-1][0].point.coords[0][0]-67.9) < 0.2 and abs(merged_point_list[segment_end_index-1][0].point.coords[0][1]-161.0)< 0.2:
+ # print("GEFUNDEN")
+
+ #Collection of points for the current segment
+ current_point_list = [merged_point_list[segment_start_index][0].point]
+
+ while segment_end_index < len(merged_point_list):
+ segment_length = merged_point_list[segment_end_index][1]-merged_point_list[segment_start_index][1]
+ if segment_length > maxstitch_distance+constants.point_spacing_to_be_considered_equal:
+ new_distance = merged_point_list[segment_start_index][1]+maxstitch_distance
+ merged_point_list.insert(segment_end_index,(PointTransfer.projected_point_tuple(point=aligned_line.interpolate(new_distance), point_source=\
+ PointSource.REGULAR_SPACING_INTERNAL),new_distance))
+ if abs(merged_point_list[segment_end_index][0].point.coords[0][0]-12.2) < 0.2 and abs(merged_point_list[segment_end_index][0].point.coords[0][1]-0.9)< 0.2:
+ print("GEFUNDEN")
+ segment_end_index+=1
+ break
+ #if abs(merged_point_list[segment_end_index][0].point.coords[0][0]-93.6) < 0.2 and abs(merged_point_list[segment_end_index][0].point.coords[0][1]-122.7)< 0.2:
+ # print("GEFUNDEN")
+
+ current_point_list.append(merged_point_list[segment_end_index][0].point)
+ simplified_len = len(LineString(current_point_list).simplify(constants.factor_offset_remove_dense_points*abs_offset,preserve_topology=False).coords)
+ if simplified_len > 2: #not all points have been simplified - so we need to add it
+ break
+
+ if merged_point_list[segment_end_index][0].point_source ==PointSource.HARD_EDGE_INTERNAL:
+ segment_end_index+=1
+ break
+ segment_end_index+=1
+
+ segment_end_index-=1
+
+ #Now we choose the best fitting point within this segment
+ index_overnext = -1
+ index_direct = -1
+ index_hard_edge = -1
+
+ iter = segment_start_index+1
+ while (iter <= segment_end_index):
+ if merged_point_list[iter][0].point_source == PointSource.OVERNEXT:
+ index_overnext = iter
+ elif merged_point_list[iter][0].point_source == PointSource.DIRECT:
+ index_direct = iter
+ elif merged_point_list[iter][0].point_source == PointSource.HARD_EDGE_INTERNAL:
+ index_hard_edge = iter
+ iter += 1
+ if index_hard_edge != -1:
+ segment_end_index = index_hard_edge
+ else:
+ if index_overnext != -1:
+ if (index_direct != -1 and index_direct > index_overnext and
+ (merged_point_list[index_direct][1]-merged_point_list[index_overnext][1]) >=
+ constants.factor_segment_length_direct_preferred_over_overnext*
+ (merged_point_list[index_overnext][1]-merged_point_list[segment_start_index][1])):
+ #We allow to take the direct projected point instead of the overnext projected point if it would result in a
+ #significant longer segment length
+ segment_end_index = index_direct
+ else:
+ segment_end_index = index_overnext
+ elif index_direct != -1:
+ segment_end_index = index_direct
+
+ #Usually OVERNEXT and DIRECT points are close to each other and in some cases both were selected as segment edges
+ #If they are too close (<abs_offset) we remove one of it
+ if (((merged_point_list[segment_start_index][0].point_source == PointSource.OVERNEXT and
+ merged_point_list[segment_end_index][0].point_source == PointSource.DIRECT) or
+ (merged_point_list[segment_start_index][0].point_source == PointSource.DIRECT and
+ merged_point_list[segment_end_index][0].point_source == PointSource.OVERNEXT)) and
+ abs(merged_point_list[segment_end_index][1] - merged_point_list[segment_start_index][1]) < abs_offset):
+ result_list.pop()
+
+ result_list.append(merged_point_list[segment_end_index])
+ #To have a chance to replace all forbidden points afterwards
+ if merged_point_list[segment_end_index][0].point_source == PointSource.FORBIDDEN_POINT:
+ forbidden_point_list.append(len(result_list)-1)
+
+ segment_start_index = segment_end_index
+ segment_end_index+=1
+
+ return_point_list = [] #[result_list[0][0].point.coords[0]]
+ return_point_source_list = []#[result_list[0][0].point_source]
+
+ #Currently replacement of forbidden points not satisfying
+ #result_list = replace_forbidden_points(aligned_line, result_list, forbidden_point_list,abs_offset)
+
+ #Finally we create the final return_point_list and return_point_source_list
+ for i in range(len(result_list)):
+ return_point_list.append(result_list[i][0].point.coords[0])
+ #if abs(result_list[i][0].point.coords[0][0]-91.7) < 0.2 and abs(result_list[i][0].point.coords[0][1]-106.15)< 0.2:
+ # print("GEFUNDEN")
+ if result_list[i][0].point_source == PointSource.HARD_EDGE_INTERNAL:
+ point_source = PointSource.HARD_EDGE
+ elif result_list[i][0].point_source == PointSource.SOFT_EDGE_INTERNAL:
+ point_source = PointSource.SOFT_EDGE
+ elif result_list[i][0].point_source == PointSource.REGULAR_SPACING_INTERNAL:
+ point_source = PointSource.REGULAR_SPACING
+ elif result_list[i][0].point_source == PointSource.FORBIDDEN_POINT:
+ point_source = PointSource.FORBIDDEN_POINT
+ else:
+ point_source = PointSource.PROJECTED_POINT
+
+ return_point_source_list.append(point_source)
+
+
+ assert(len(return_point_list) == len(return_point_source_list))
+
+ #return remove_dense_points(returnpointlist, returnpointsourcelist, maxstitch_distance,abs_offset)
+ return return_point_list, return_point_source_list
+
+#Rasters a line between start_distance and end_distance.
+#Input:
+#-line: The line to be rastered
+#-start_distance: The distance along the line from which the rastering should start
+#-end_distance: The distance along the line until which the rastering should be done
+#-maxstitch_distance: The maximum allowed stitch distance
+#-stitching_direction: =1 is stitched along line direction, =-1 if stitched in reversed order. Note that
+# start_distance > end_distance for stitching_direction = -1
+#-must_use_points_deque: deque with projected points on line from its neighbors. An item of the deque
+#is setup as follows: ((projected point on line, LineStringSampling.PointSource), priority=distance along line)
+#index of point_origin is the index of the point in the neighboring line
+#-abs_offset: used offset between to offsetted curves
+#Output:
+#-List of tuples with the rastered point coordinates
+#-List which defines the point origin for each point according to the PointSource enum.
+def raster_line_string_with_priority_points_graph(line, maxstitch_distance, stitching_direction, must_use_points_deque, abs_offset, offset_by_half):
+ if (line.length < constants.line_lengh_seen_as_one_point):
+ return [line.coords[0]], [PointSource.HARD_EDGE]
+
+ deque_points = list(must_use_points_deque)
+
+ linecoords = line.coords
+
+ if stitching_direction==-1:
+ linecoords = linecoords[::-1]
+ for i in range(len(deque_points)):
+ deque_points[i] = (deque_points[i][0],
+ line.length-deque_points[i][1])
+ else:
+ deque_points = deque_points[::-1] #Since points with highest priority (=distance along line) are first (descending sorted)
+
+# Ordering in priority queue:
+# (point, LineStringSampling.PointSource), priority)
+ aligned_line = LineString(linecoords) #might be different from line for stitching_direction=-1
+
+ angles = calculate_line_angles(aligned_line)
+ #For the first and last point we cannot calculate an angle. Set it to above the limit to make it a hard edge
+ angles[0] = 1.1*constants.limiting_angle
+ angles[-1] = 1.1*constants.limiting_angle
+
+ current_distance = 0.0
+
+ #Next we merge the line points and the projected (deque) points into one list
+ merged_point_list = []
+ dq_iter = 0
+ for point,angle in zip(aligned_line.coords,angles):
+ #if abs(point[0]-52.9) < 0.2 and abs(point[1]-183.4)< 0.2:
+ # print("GEFUNDEN")
+ current_distance = aligned_line.project(Point(point))
+ while dq_iter < len(deque_points) and deque_points[dq_iter][1] < current_distance:
+ #We want to avoid setting points at soft edges close to forbidden points
+ if deque_points[dq_iter][0].point_source == PointSource.FORBIDDEN_POINT:
+ #Check whether a previous added point is a soft edge close to the forbidden point
+ if (merged_point_list[-1][0].point_source == PointSource.SOFT_EDGE_INTERNAL and
+ abs(merged_point_list[-1][1]-deque_points[dq_iter][1] < abs_offset*constants.factor_offset_forbidden_point)):
+ item = merged_point_list.pop()
+ merged_point_list.append((PointTransfer.projected_point_tuple(point=item[0].point, point_source=\
+ PointSource.FORBIDDEN_POINT),item[1]))
+ else:
+ merged_point_list.append(deque_points[dq_iter])
+ dq_iter+=1
+ #Check whether the current point is close to a forbidden point
+ if (dq_iter < len(deque_points) and
+ deque_points[dq_iter-1][0].point_source == PointSource.FORBIDDEN_POINT and
+ angle < constants.limiting_angle and
+ abs(deque_points[dq_iter-1][1]-current_distance) < abs_offset*constants.factor_offset_forbidden_point):
+ point_source = PointSource.FORBIDDEN_POINT
+ else:
+ if angle < constants.limiting_angle:
+ point_source = PointSource.SOFT_EDGE_INTERNAL
+ else:
+ point_source = PointSource.HARD_EDGE_INTERNAL
+ merged_point_list.append((PointTransfer.projected_point_tuple(point=Point(point), point_source=point_source),current_distance))
+
+ result_list = [merged_point_list[0]]
+
+ #General idea: Take one point of merged_point_list after another into the current segment until this segment is not simplified to a straight line by shapelys simplify method.
+ #Then, look at the points within this segment and choose the best fitting one (HARD_EDGE > OVERNEXT projected point > DIRECT projected point) as termination of this segment
+ # and start point for the next segment (so we do not always take the maximum possible length for a segment)
+ segment_start_index = 0
+ segment_end_index = 1
+ forbidden_point_list = []
+ while segment_end_index < len(merged_point_list):
+ #if abs(merged_point_list[segment_end_index-1][0].point.coords[0][0]-67.9) < 0.2 and abs(merged_point_list[segment_end_index-1][0].point.coords[0][1]-161.0)< 0.2:
+ # print("GEFUNDEN")
+
+ #Collection of points for the current segment
+ current_point_list = [merged_point_list[segment_start_index][0].point]
+
+ while segment_end_index < len(merged_point_list):
+ segment_length = merged_point_list[segment_end_index][1]-merged_point_list[segment_start_index][1]
+ if segment_length > maxstitch_distance+constants.point_spacing_to_be_considered_equal:
+ new_distance = merged_point_list[segment_start_index][1]+maxstitch_distance
+ merged_point_list.insert(segment_end_index,(PointTransfer.projected_point_tuple(point=aligned_line.interpolate(new_distance), point_source=\
+ PointSource.REGULAR_SPACING_INTERNAL),new_distance))
+ #if abs(merged_point_list[segment_end_index][0].point.coords[0][0]-12.2) < 0.2 and abs(merged_point_list[segment_end_index][0].point.coords[0][1]-0.9)< 0.2:
+ # print("GEFUNDEN")
+ segment_end_index+=1
+ break
+ #if abs(merged_point_list[segment_end_index][0].point.coords[0][0]-34.4) < 0.2 and abs(merged_point_list[segment_end_index][0].point.coords[0][1]-6.2)< 0.2:
+ # print("GEFUNDEN")
+
+ current_point_list.append(merged_point_list[segment_end_index][0].point)
+ simplified_len = len(LineString(current_point_list).simplify(constants.factor_offset_remove_dense_points*abs_offset,preserve_topology=False).coords)
+ if simplified_len > 2: #not all points have been simplified - so we need to add it
+ break
+
+ if merged_point_list[segment_end_index][0].point_source ==PointSource.HARD_EDGE_INTERNAL:
+ segment_end_index+=1
+ break
+ segment_end_index+=1
+
+ segment_end_index-=1
+
+ #Now we choose the best fitting point within this segment
+ index_overnext = -1
+ index_direct = -1
+ index_hard_edge = -1
+
+ iter = segment_start_index+1
+ while (iter <= segment_end_index):
+ if merged_point_list[iter][0].point_source == PointSource.OVERNEXT:
+ index_overnext = iter
+ elif merged_point_list[iter][0].point_source == PointSource.DIRECT:
+ index_direct = iter
+ elif merged_point_list[iter][0].point_source == PointSource.HARD_EDGE_INTERNAL:
+ index_hard_edge = iter
+ iter += 1
+ if index_hard_edge != -1:
+ segment_end_index = index_hard_edge
+ else:
+ if offset_by_half:
+ index_preferred = index_overnext
+ index_less_preferred = index_direct
+ else:
+ index_preferred = index_direct
+ index_less_preferred = index_overnext
+
+ if index_preferred != -1:
+ if (index_less_preferred != -1 and index_less_preferred > index_preferred and
+ (merged_point_list[index_less_preferred][1]-merged_point_list[index_preferred][1]) >=
+ constants.factor_segment_length_direct_preferred_over_overnext*
+ (merged_point_list[index_preferred][1]-merged_point_list[segment_start_index][1])):
+ #We allow to take the direct projected point instead of the overnext projected point if it would result in a
+ #significant longer segment length
+ segment_end_index = index_less_preferred
+ else:
+ segment_end_index = index_preferred
+ elif index_less_preferred != -1:
+ segment_end_index = index_less_preferred
+
+ #Usually OVERNEXT and DIRECT points are close to each other and in some cases both were selected as segment edges
+ #If they are too close (<abs_offset) we remove one of it
+ if (((merged_point_list[segment_start_index][0].point_source == PointSource.OVERNEXT and
+ merged_point_list[segment_end_index][0].point_source == PointSource.DIRECT) or
+ (merged_point_list[segment_start_index][0].point_source == PointSource.DIRECT and
+ merged_point_list[segment_end_index][0].point_source == PointSource.OVERNEXT)) and
+ abs(merged_point_list[segment_end_index][1] - merged_point_list[segment_start_index][1]) < abs_offset):
+ result_list.pop()
+
+ result_list.append(merged_point_list[segment_end_index])
+ #To have a chance to replace all forbidden points afterwards
+ if merged_point_list[segment_end_index][0].point_source == PointSource.FORBIDDEN_POINT:
+ forbidden_point_list.append(len(result_list)-1)
+
+ segment_start_index = segment_end_index
+ segment_end_index+=1
+
+ return_point_list = [] #[result_list[0][0].point.coords[0]]
+ return_point_source_list = []#[result_list[0][0].point_source]
+
+ #Currently replacement of forbidden points not satisfying
+ result_list = replace_forbidden_points(aligned_line, result_list, forbidden_point_list,abs_offset)
+
+ #Finally we create the final return_point_list and return_point_source_list
+ for i in range(len(result_list)):
+ return_point_list.append(result_list[i][0].point.coords[0])
+ #if abs(result_list[i][0].point.coords[0][0]-91.7) < 0.2 and abs(result_list[i][0].point.coords[0][1]-106.15)< 0.2:
+ # print("GEFUNDEN")
+ if result_list[i][0].point_source == PointSource.HARD_EDGE_INTERNAL:
+ point_source = PointSource.HARD_EDGE
+ elif result_list[i][0].point_source == PointSource.SOFT_EDGE_INTERNAL:
+ point_source = PointSource.SOFT_EDGE
+ elif result_list[i][0].point_source == PointSource.REGULAR_SPACING_INTERNAL:
+ point_source = PointSource.REGULAR_SPACING
+ elif result_list[i][0].point_source == PointSource.FORBIDDEN_POINT:
+ point_source = PointSource.FORBIDDEN_POINT
+ else:
+ point_source = PointSource.PROJECTED_POINT
+
+ return_point_source_list.append(point_source)
+
+
+ assert(len(return_point_list) == len(return_point_source_list))
+
+ #return remove_dense_points(returnpointlist, returnpointsourcelist, maxstitch_distance,abs_offset)
+ return return_point_list, return_point_source_list
+
+def replace_forbidden_points(line, result_list, forbidden_point_list_indices, abs_offset):
+ current_index_shift = 0 #since we add and remove points in the result_list, we need to adjust the indices stored in forbidden_point_list_indices
+ for index in forbidden_point_list_indices:
+ #if abs(result_list[index][0].point.coords[0][0]-40.7) < 0.2 and abs(result_list[index][0].point.coords[0][1]-1.3)< 0.2:
+ # print("GEFUNDEN")
+ index+=current_index_shift
+ distance_left = result_list[index][0].point.distance(result_list[index-1][0].point)/2.0
+ distance_right = result_list[index][0].point.distance(result_list[(index+1)%len(result_list)][0].point)/2.0
+ while distance_left > constants.point_spacing_to_be_considered_equal and distance_right > constants.point_spacing_to_be_considered_equal:
+ new_point_left_proj = result_list[index][1]-distance_left
+ if new_point_left_proj < 0:
+ new_point_left_proj += line.length
+ new_point_right_proj = result_list[index][1]+distance_right
+ if new_point_right_proj > line.length:
+ new_point_right_proj-=line.length
+ point_left = line.interpolate(new_point_left_proj)
+ point_right = line.interpolate(new_point_right_proj)
+ forbidden_point_distance = result_list[index][0].point.distance(LineString([point_left, point_right]))
+ if forbidden_point_distance < constants.factor_offset_remove_dense_points*abs_offset:
+ del result_list[index]
+ result_list.insert(index, (PointTransfer.projected_point_tuple(point=point_right, point_source=\
+ PointSource.REPLACED_FORBIDDEN_POINT),new_point_right_proj))
+ result_list.insert(index, (PointTransfer.projected_point_tuple(point=point_left, point_source=\
+ PointSource.REPLACED_FORBIDDEN_POINT),new_point_left_proj))
+ current_index_shift+=1
+ break
+ else:
+ distance_left/=2.0
+ distance_right/=2.0
+ return result_list
+
+if __name__ == "__main__":
+ line = LineString([(0,0), (1,0), (2,1),(3,0),(4,0)])
+
+ print(calculate_line_angles(line)*180.0/math.pi)