summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/elements/satin_column.py8
-rw-r--r--lib/stitches/running_stitch.py6
-rw-r--r--lib/utils/prng.py26
3 files changed, 20 insertions, 20 deletions
diff --git a/lib/elements/satin_column.py b/lib/elements/satin_column.py
index 4028ad27..eba63c6c 100644
--- a/lib/elements/satin_column.py
+++ b/lib/elements/satin_column.py
@@ -783,7 +783,7 @@ class SatinColumn(EmbroideryElement):
# pre-cache ramdomised parameters to avoid property calls in loop
if use_random:
- seed = prng.joinArgs(self.random_seed, "satin-points")
+ seed = prng.join_args(self.random_seed, "satin-points")
offset_proportional_min = np.array(offset_proportional) - self.random_width_decrease
offset_range = (self.random_width_increase + self.random_width_decrease)
spacing_sigma = spacing * self.random_zigzag_spacing
@@ -857,7 +857,7 @@ class SatinColumn(EmbroideryElement):
if to_travel <= 0:
if use_random:
- roll = prng.uniformFloats(seed, cycle)
+ roll = prng.uniform_floats(seed, cycle)
offset_prop = offset_proportional_min + roll[0:2] * offset_range
to_travel = spacing + ((roll[2] - 0.5) * 2 * spacing_sigma)
else:
@@ -987,7 +987,7 @@ class SatinColumn(EmbroideryElement):
if last_point is not None:
split_points, _ = self.get_split_points(
last_point, a, last_short_point, a_short, max_stitch_length, last_count,
- length_sigma, random_phase, min_split_length, prng.joinArgs(seed, 'satin-split', 2*i))
+ length_sigma, random_phase, min_split_length, prng.join_args(seed, 'satin-split', 2 * i))
patch.add_stitches(split_points, ("satin_column", "satin_split_stitch"))
patch.add_stitch(a_short)
@@ -995,7 +995,7 @@ class SatinColumn(EmbroideryElement):
split_points, last_count = self.get_split_points(
a, b, a_short, b_short, max_stitch_length, None,
- length_sigma, random_phase, min_split_length, prng.joinArgs(seed, 'satin-split', 2*i+1))
+ length_sigma, random_phase, min_split_length, prng.join_args(seed, 'satin-split', 2 * i + 1))
patch.add_stitches(split_points, ("satin_column", "satin_split_stitch"))
patch.add_stitch(b_short)
diff --git a/lib/stitches/running_stitch.py b/lib/stitches/running_stitch.py
index 8ba53498..1dbfcaaf 100644
--- a/lib/stitches/running_stitch.py
+++ b/lib/stitches/running_stitch.py
@@ -24,7 +24,7 @@ def split_segment_even_n(a, b, segments: int, jitter_sigma: float = 0.0, random_
splits = np.array(range(1, segments)) / segments
if random_seed is not None:
- jitters = (prng.nUniformFloats(len(splits), random_seed) * 2) - 1
+ jitters = (prng.n_uniform_floats(len(splits), random_seed) * 2) - 1
splits = splits + jitters * (jitter_sigma / segments)
# sort the splits in case a bad roll transposes any of them
@@ -39,12 +39,12 @@ def split_segment_even_dist(a, b, max_length: float, jitter_sigma: float = 0.0,
def split_segment_random_phase(a, b, length: float, length_sigma: float, random_seed: str) -> typing.List[shgeo.Point]:
line = shgeo.LineString([a, b])
- progress = length * prng.uniformFloats(random_seed, "phase")[0]
+ progress = length * prng.uniform_floats(random_seed, "phase")[0]
splits = [progress]
distance = line.length
if progress >= distance:
return []
- for x in prng.iterUniformFloats(random_seed):
+ for x in prng.iter_uniform_floats(random_seed):
progress += length * (1 + length_sigma * (x - 0.5) * 2)
if progress >= distance:
break
diff --git a/lib/utils/prng.py b/lib/utils/prng.py
index 9face2be..33102205 100644
--- a/lib/utils/prng.py
+++ b/lib/utils/prng.py
@@ -13,7 +13,7 @@ import numpy as np
# Using multiple counters for n-dimentional random streams is also possible and is useful for grid-like structures.
-def joinArgs(*args):
+def join_args(*args):
# Stringifies parameters into a slash-separated string for use in hash keys.
# Idempotent and associative.
return "/".join([str(x) for x in args])
@@ -22,37 +22,37 @@ def joinArgs(*args):
MAX_UNIFORM_INT = 2 ** 32 - 1
-def uniformInts(*args):
+def uniform_ints(*args):
# Single pseudo-random drawing determined by the joined parameters.
# To get a longer sequence of random numbers, call this loop with a counter as one of the parameters.
# Returns 8 uniformly random uint32.
- s = joinArgs(*args)
+ s = join_args(*args)
# blake2s is python's fastest hash algorithm for small inputs and is designed to be usable as a PRNG.
h = blake2s(s.encode()).hexdigest()
nums = []
for i in range(0, 64, 8):
- nums.append(int(h[i:i+8], 16))
+ nums.append(int(h[i:i + 8], 16))
return np.array(nums)
-def uniformFloats(*args):
+def uniform_floats(*args):
# Single pseudo-random drawing determined by the joined parameters.
# To get a longer sequence of random numbers, call this loop with a counter as one of the parameters.
# Returns an array of 8 floats in the range [0,1]
- return uniformInts(*args) / MAX_UNIFORM_INT
+ return uniform_ints(*args) / MAX_UNIFORM_INT
-def nUniformFloats(n: int, *args):
+def n_uniform_floats(n: int, *args):
# returns a fixed number (which may exceed 8) of floats in the range [0,1]
- seed = joinArgs(*args)
- nBlocks = ceil(n/8)
- blocks = [uniformFloats(seed, x) for x in range(nBlocks)]
+ seed = join_args(*args)
+ nBlocks = ceil(n / 8)
+ blocks = [uniform_floats(seed, x) for x in range(nBlocks)]
return np.concatenate(blocks)[0:n]
-def iterUniformFloats(*args):
+def iter_uniform_floats(*args):
# returns an infinite sequence of floats in the range [0,1]
- seed = joinArgs(*args)
- blocks = map(lambda x: list(uniformFloats(seed, x)), count(0))
+ seed = join_args(*args)
+ blocks = map(lambda x: list(uniform_floats(seed, x)), count(0))
return chain.from_iterable(blocks)