#!/usr/bin/python # # Important resources: # lxml interface for walking SVG tree: # http://codespeak.net/lxml/tutorial.html#elementpath # Inkscape library for extracting paths from SVG: # http://wiki.inkscape.org/wiki/index.php/Python_modules_for_extensions#simplepath.py # Shapely computational geometry library: # http://gispython.org/shapely/manual.html#multipolygons # Embroidery file format documentation: # http://www.achatina.de/sewing/main/TECHNICL.HTM import sys import traceback sys.path.append("/usr/share/inkscape/extensions") import os import subprocess from copy import deepcopy import time from itertools import chain, izip, groupby from collections import deque import inkex import simplepath import simplestyle import simpletransform from bezmisc import bezierlength, beziertatlength, bezierpointatt from cspsubdiv import cspsubdiv import cubicsuperpath import math import lxml.etree as etree import shapely.geometry as shgeo import shapely.affinity as affinity import shapely.ops import networkx from pprint import pformat import inkstitch from inkstitch import _, cache, dbg, param, EmbroideryElement, get_nodes, SVG_POLYLINE_TAG, SVG_GROUP_TAG, PIXELS_PER_MM, get_viewbox_transform from inkstitch.stitches import running_stitch, auto_fill, legacy_fill from inkstitch.utils import cut_path class Fill(EmbroideryElement): element_name = _("Fill") def __init__(self, *args, **kwargs): super(Fill, self).__init__(*args, **kwargs) @property @param('auto_fill', _('Manually routed fill stitching'), type='toggle', inverse=True, default=True) def auto_fill(self): return self.get_boolean_param('auto_fill', True) @property @param('angle', _('Angle of lines of stitches'), unit='deg', type='float', default=0) @cache def angle(self): return math.radians(self.get_float_param('angle', 0)) @property def color(self): return self.get_style("fill") @property @param('flip', _('Flip fill (start right-to-left)'), type='boolean', default=False) def flip(self): return self.get_boolean_param("flip", False) @property @param('row_spacing_mm', _('Spacing between rows'), unit='mm', type='float', default=0.25) def row_spacing(self): return max(self.get_float_param("row_spacing_mm", 0.25), 0.01) @property def end_row_spacing(self): return self.get_float_param("end_row_spacing_mm") @property @param('max_stitch_length_mm', _('Maximum fill stitch length'), unit='mm', type='float', default=3.0) def max_stitch_length(self): return max(self.get_float_param("max_stitch_length_mm", 3.0), 0.01) @property @param('staggers', _('Stagger rows this many times before repeating'), type='int', default=4) def staggers(self): return self.get_int_param("staggers", 4) @property @cache def paths(self): return self.flatten(self.parse_path()) @property @cache def shape(self): poly_ary = [] for sub_path in self.paths: point_ary = [] last_pt = None for pt in sub_path: if (last_pt is not None): vp = (pt[0] - last_pt[0], pt[1] - last_pt[1]) dp = math.sqrt(math.pow(vp[0], 2.0) + math.pow(vp[1], 2.0)) # dbg.write("dp %s\n" % dp) if (dp > 0.01): # I think too-close points confuse shapely. point_ary.append(pt) last_pt = pt else: last_pt = pt if point_ary: poly_ary.append(point_ary) # shapely's idea of "holes" are to subtract everything in the second set # from the first. So let's at least make sure the "first" thing is the # biggest path. # TODO: actually figure out which things are holes and which are shells poly_ary.sort(key=lambda point_list: shgeo.Polygon(point_list).area, reverse=True) polygon = shgeo.MultiPolygon([(poly_ary[0], poly_ary[1:])]) # print >> sys.stderr, "polygon valid:", polygon.is_valid return polygon def to_patches(self, last_patch): stitch_lists = legacy_fill(self.shape, self.angle, self.row_spacing, self.end_row_spacing, self.max_stitch_length, self.flip, self.staggers) return [Patch(stitches=stitch_list, color=self.color) for stitch_list in stitch_lists] rows_of_segments = fill.intersect_region_with_grating(self.shape, self.angle, self.row_spacing, self.end_row_spacing, self.flip) groups_of_segments = fill.pull_runs(rows_of_segments) return [fill.section_to_patch(group) for group in groups_of_segments] class AutoFill(Fill): element_name = _("Auto-Fill") @property @param('auto_fill', _('Automatically routed fill stitching'), type='toggle', default=True) def auto_fill(self): return self.get_boolean_param('auto_fill', True) @property @cache def outline(self): return self.shape.boundary[0] @property @cache def outline_length(self): return self.outline.length @property def flip(self): return False @property @param('running_stitch_length_mm', _('Running stitch length (traversal between sections)'), unit='mm', type='float', default=1.5) def running_stitch_length(self): return max(self.get_float_param("running_stitch_length_mm", 1.5), 0.01) @property @param('fill_underlay', _('Underlay'), type='toggle', group=_('AutoFill Underlay'), default=False) def fill_underlay(self): return self.get_boolean_param("fill_underlay", default=False) @property @param('fill_underlay_angle', _('Fill angle (default: fill angle + 90 deg)'), unit='deg', group=_('AutoFill Underlay'), type='float') @cache def fill_underlay_angle(self): underlay_angle = self.get_float_param("fill_underlay_angle") if underlay_angle: return math.radians(underlay_angle) else: return self.angle + math.pi / 2.0 @property @param('fill_underlay_row_spacing_mm', _('Row spacing (default: 3x fill row spacing)'), unit='mm', group=_('AutoFill Underlay'), type='float') @cache def fill_underlay_row_spacing(self): return self.get_float_param("fill_underlay_row_spacing_mm") or self.row_spacing * 3 @property @param('fill_underlay_max_stitch_length_mm', _('Max stitch length'), unit='mm', group=_('AutoFill Underlay'), type='float') @cache def fill_underlay_max_stitch_length(self): return self.get_float_param("fill_underlay_max_stitch_length_mm") or self.max_stitch_length @property @param('fill_underlay_inset_mm', _('Inset'), unit='mm', group=_('AutoFill Underlay'), type='float', default=0) def fill_underlay_inset(self): return self.get_float_param('fill_underlay_inset_mm', 0) @property def underlay_shape(self): if self.fill_underlay_inset: shape = self.shape.buffer(-self.fill_underlay_inset) if not isinstance(shape, shgeo.MultiPolygon): shape = shgeo.MultiPolygon([shape]) return shape else: return self.shape def to_patches(self, last_patch): stitches = [] if last_patch is None: starting_point = None else: starting_point = last_patch.stitches[-1] if self.fill_underlay: stitches.extend(auto_fill(self.underlay_shape, self.fill_underlay_angle, self.fill_underlay_row_spacing, self.fill_underlay_row_spacing, self.fill_underlay_max_stitch_length, self.running_stitch_length, self.staggers, starting_point)) starting_point = stitches[-1] stitches.extend(auto_fill(self.shape, self.angle, self.row_spacing, self.end_row_spacing, self.max_stitch_length, self.running_stitch_length, self.staggers, starting_point)) return [Patch(stitches=stitches, color=self.color)] class Stroke(EmbroideryElement): element_name = "Stroke" @property @param('satin_column', _('Satin stitch along paths'), type='toggle', inverse=True) def satin_column(self): return self.get_boolean_param("satin_column") @property def color(self): return self.get_style("stroke") @property @cache def width(self): stroke_width = self.get_style("stroke-width") if stroke_width.endswith("px"): stroke_width = stroke_width[:-2] return float(stroke_width) @property def dashed(self): return self.get_style("stroke-dasharray") is not None @property @param('running_stitch_length_mm', _('Running stitch length'), unit='mm', type='float', default=1.5) def running_stitch_length(self): return max(self.get_float_param("running_stitch_length_mm", 1.5), 0.01) @property @param('zigzag_spacing_mm', _('Zig-zag spacing (peak-to-peak)'), unit='mm', type='float', default=0.4) @cache def zigzag_spacing(self): return max(self.get_float_param("zigzag_spacing_mm", 0.4), 0.01) @property @param('repeats', _('Repeats'), type='int', default="1") def repeats(self): return self.get_int_param("repeats", 1) @property def paths(self): return self.flatten(self.parse_path()) def is_running_stitch(self): # stroke width <= 0.5 pixels is deprecated in favor of dashed lines return self.dashed or self.width <= 0.5 def stroke_points(self, emb_point_list, zigzag_spacing, stroke_width): patch = Patch(color=self.color) p0 = emb_point_list[0] rho = 0.0 side = 1 last_segment_direction = None for repeat in xrange(self.repeats): if repeat % 2 == 0: order = range(1, len(emb_point_list)) else: order = range(-2, -len(emb_point_list) - 1, -1) for segi in order: p1 = emb_point_list[segi] # how far we have to go along segment seg_len = (p1 - p0).length() if (seg_len == 0): continue # vector pointing along segment along = (p1 - p0).unit() # vector pointing to edge of stroke width perp = along.rotate_left() * (stroke_width * 0.5) if stroke_width == 0.0 and last_segment_direction is not None: if abs(1.0 - along * last_segment_direction) > 0.5: # if greater than 45 degree angle, stitch the corner rho = zigzag_spacing patch.add_stitch(p0) # iteration variable: how far we are along segment while (rho <= seg_len): left_pt = p0 + along * rho + perp * side patch.add_stitch(left_pt) rho += zigzag_spacing side = -side p0 = p1 last_segment_direction = along rho -= seg_len if (p0 - patch.stitches[-1]).length() > 0.1: patch.add_stitch(p0) return patch def to_patches(self, last_patch): patches = [] for path in self.paths: path = [inkstitch.Point(x, y) for x, y in path] if self.is_running_stitch(): patch = self.stroke_points(path, self.running_stitch_length, stroke_width=0.0) else: patch = self.stroke_points(path, self.zigzag_spacing / 2.0, stroke_width=self.width) patches.append(patch) return patches class SatinColumn(EmbroideryElement): element_name = _("Satin Column") def __init__(self, *args, **kwargs): super(SatinColumn, self).__init__(*args, **kwargs) @property @param('satin_column', _('Custom satin column'), type='toggle') def satin_column(self): return self.get_boolean_param("satin_column") @property def color(self): return self.get_style("stroke") @property @param('zigzag_spacing_mm', _('Zig-zag spacing (peak-to-peak)'), unit='mm', type='float', default=0.4) def zigzag_spacing(self): # peak-to-peak distance between zigzags return max(self.get_float_param("zigzag_spacing_mm", 0.4), 0.01) @property @param('pull_compensation_mm', _('Pull compensation'), unit='mm', type='float') def pull_compensation(self): # In satin stitch, the stitches have a tendency to pull together and # narrow the entire column. We can compensate for this by stitching # wider than we desire the column to end up. return self.get_float_param("pull_compensation_mm", 0) @property @param('contour_underlay', _('Contour underlay'), type='toggle', group=_('Contour Underlay')) def contour_underlay(self): # "Contour underlay" is stitching just inside the rectangular shape # of the satin column; that is, up one side and down the other. return self.get_boolean_param("contour_underlay") @property @param('contour_underlay_stitch_length_mm', _('Stitch length'), unit='mm', group=_('Contour Underlay'), type='float', default=1.5) def contour_underlay_stitch_length(self): return max(self.get_float_param("contour_underlay_stitch_length_mm", 1.5), 0.01) @property @param('contour_underlay_inset_mm', _('Contour underlay inset amount'), unit='mm', group=_('Contour Underlay'), type='float', default=0.4) def contour_underlay_inset(self): # how far inside the edge of the column to stitch the underlay return self.get_float_param("contour_underlay_inset_mm", 0.4) @property @param('center_walk_underlay', _('Center-walk underlay'), type='toggle', group=_('Center-Walk Underlay')) def center_walk_underlay(self): # "Center walk underlay" is stitching down and back in the centerline # between the two sides of the satin column. return self.get_boolean_param("center_walk_underlay") @property @param('center_walk_underlay_stitch_length_mm', _('Stitch length'), unit='mm', group=_('Center-Walk Underlay'), type='float', default=1.5) def center_walk_underlay_stitch_length(self): return max(self.get_float_param("center_walk_underlay_stitch_length_mm", 1.5), 0.01) @property @param('zigzag_underlay', _('Zig-zag underlay'), type='toggle', group=_('Zig-zag Underlay')) def zigzag_underlay(self): return self.get_boolean_param("zigzag_underlay") @property @param('zigzag_underlay_spacing_mm', _('Zig-Zag spacing (peak-to-peak)'), unit='mm', group=_('Zig-zag Underlay'), type='float', default=3) def zigzag_underlay_spacing(self): return max(self.get_float_param("zigzag_underlay_spacing_mm", 3), 0.01) @property @param('zigzag_underlay_inset_mm', _('Inset amount (default: half of contour underlay inset)'), unit='mm', group=_('Zig-zag Underlay'), type='float') def zigzag_underlay_inset(self): # how far in from the edge of the satin the points in the zigzags # should be # Default to half of the contour underlay inset. That is, if we're # doing both contour underlay and zigzag underlay, make sure the # points of the zigzag fall outside the contour underlay but inside # the edges of the satin column. return self.get_float_param("zigzag_underlay_inset_mm") or self.contour_underlay_inset / 2.0 @property @cache def csp(self): return self.parse_path() @property @cache def flattened_beziers(self): if len(self.csp) == 2: return self.simple_flatten_beziers() else: return self.flatten_beziers_with_rungs() def flatten_beziers_with_rungs(self): input_paths = [self.flatten([path]) for path in self.csp] input_paths = [shgeo.LineString(path[0]) for path in input_paths] paths = input_paths[:] paths.sort(key=lambda path: path.length, reverse=True) # Imagine a satin column as a curvy ladder. # The two long paths are the "rails" of the ladder. The remainder are # the "rungs". rails = paths[:2] rungs = shgeo.MultiLineString(paths[2:]) # The rails should stay in the order they were in the original CSP. # (this lets the user control where the satin starts and ends) rails.sort(key=lambda rail: input_paths.index(rail)) result = [] for rail in rails: if not rail.is_simple: self.fatal(_("One or more rails crosses itself, and this is not allowed. Please split into multiple satin columns.")) # handle null intersections here? linestrings = shapely.ops.split(rail, rungs) print >> dbg, "rails and rungs", [str(rail) for rail in rails], [str(rung) for rung in rungs] if len(linestrings.geoms) < len(rungs.geoms) + 1: self.fatal(_("satin column: One or more of the rungs doesn't intersect both rails.") + " " + _("Each rail should intersect both rungs once.")) elif len(linestrings.geoms) > len(rungs.geoms) + 1: self.fatal(_("satin column: One or more of the rungs intersects the rails more than once.") + " " + _("Each rail should intersect both rungs once.")) paths = [[inkstitch.Point(*coord) for coord in ls.coords] for ls in linestrings.geoms] result.append(paths) return zip(*result) def simple_flatten_beziers(self): # Given a pair of paths made up of bezier segments, flatten # each individual bezier segment into line segments that approximate # the curves. Retain the divisions between beziers -- we'll use those # later. paths = [] for path in self.csp: # See the documentation in the parent class for parse_path() for a # description of the format of the CSP. Each bezier is constructed # using two neighboring 3-tuples in the list. flattened_path = [] # iterate over pairs of 3-tuples for prev, current in zip(path[:-1], path[1:]): flattened_segment = self.flatten([[prev, current]]) flattened_segment = [inkstitch.Point(x, y) for x, y in flattened_segment[0]] flattened_path.append(flattened_segment) paths.append(flattened_path) return zip(*paths) def validate_satin_column(self): # The node should have exactly two paths with no fill. Each # path should have the same number of points, meaning that they # will both be made up of the same number of bezier curves. node_id = self.node.get("id") if self.get_style("fill") is not None: self.fatal(_("satin column: object %s has a fill (but should not)") % node_id) if len(self.csp) == 2: if len(self.csp[0]) != len(self.csp[1]): self.fatal(_("satin column: object %(id)s has two paths with an unequal number of points (%(length1)d and %(length2)d)") % \ dict(id=node_id, length1=len(self.csp[0]), length2=len(self.csp[1]))) def offset_points(self, pos1, pos2, offset_px): # Expand or contract two points about their midpoint. This is # useful for pull compensation and insetting underlay. distance = (pos1 - pos2).length() if distance < 0.0001: # if they're the same point, we don't know which direction # to offset in, so we have to just return the points return pos1, pos2 # don't contract beyond the midpoint, or we'll start expanding if offset_px < -distance / 2.0: offset_px = -distance / 2.0 pos1 = pos1 + (pos1 - pos2).unit() * offset_px pos2 = pos2 + (pos2 - pos1).unit() * offset_px return pos1, pos2 def walk(self, path, start_pos, start_index, distance): # Move pixels along , which is a sequence of line # segments defined by points. # is the index of the line segment in that # we're currently on. is where along that line # segment we are. Return a new position and index. # print >> dbg, "walk", start_pos, start_index, distance pos = start_pos index = start_index last_index = len(path) - 1 distance_remaining = distance while True: if index >= last_index: return pos, index segment_end = path[index + 1] segment = segment_end - pos segment_length = segment.length() if segment_length > distance_remaining: # our walk ends partway along this segment return pos + segment.unit() * distance_remaining, index else: # our walk goes past the end of this segment, so advance # one point index += 1 distance_remaining -= segment_length pos = segment_end def walk_paths(self, spacing, offset): # Take a bezier segment from each path in turn, and plot out an # equal number of points on each bezier. Return the points plotted. # The points will be contracted or expanded by offset using # offset_points(). points = [[], []] def add_pair(pos1, pos2): pos1, pos2 = self.offset_points(pos1, pos2, offset) points[0].append(pos1) points[1].append(pos2) # We may not be able to fit an even number of zigzags in each pair of # beziers. We'll store the remaining bit of the beziers after handling # each section. remainder_path1 = [] remainder_path2 = [] for segment1, segment2 in self.flattened_beziers: subpath1 = remainder_path1 + segment1 subpath2 = remainder_path2 + segment2 len1 = shgeo.LineString(subpath1).length len2 = shgeo.LineString(subpath2).length # Base the number of stitches in each section on the _longest_ of # the two beziers. Otherwise, things could get too sparse when one # side is significantly longer (e.g. when going around a corner). # The risk here is that we poke a hole in the fabric if we try to # cram too many stitches on the short bezier. The user will need # to avoid this through careful construction of paths. # # TODO: some commercial machine embroidery software compensates by # pulling in some of the "inner" stitches toward the center a bit. # note, this rounds down using integer-division num_points = max(len1, len2) / spacing spacing1 = len1 / num_points spacing2 = len2 / num_points pos1 = subpath1[0] index1 = 0 pos2 = subpath2[0] index2 = 0 for i in xrange(int(num_points)): add_pair(pos1, pos2) pos1, index1 = self.walk(subpath1, pos1, index1, spacing1) pos2, index2 = self.walk(subpath2, pos2, index2, spacing2) if index1 < len(subpath1) - 1: remainder_path1 = [pos1] + subpath1[index1 + 1:] else: remainder_path1 = [] if index2 < len(subpath2) - 1: remainder_path2 = [pos2] + subpath2[index2 + 1:] else: remainder_path2 = [] # We're off by one in the algorithm above, so we need one more # pair of points. We also want to add points at the very end to # make sure we match the vectors on screen as best as possible. # Try to avoid doing both if they're going to stack up too # closely. end1 = remainder_path1[-1] end2 = remainder_path2[-1] if (end1 - pos1).length() > 0.3 * spacing: add_pair(pos1, pos2) add_pair(end1, end2) return points def do_contour_underlay(self): # "contour walk" underlay: do stitches up one side and down the # other. forward, back = self.walk_paths(self.contour_underlay_stitch_length, -self.contour_underlay_inset) return Patch(color=self.color, stitches=(forward + list(reversed(back)))) def do_center_walk(self): # Center walk underlay is just a running stitch down and back on the # center line between the bezier curves. # Do it like contour underlay, but inset all the way to the center. forward, back = self.walk_paths(self.center_walk_underlay_stitch_length, -100000) return Patch(color=self.color, stitches=(forward + list(reversed(back)))) def do_zigzag_underlay(self): # zigzag underlay, usually done at a much lower density than the # satin itself. It looks like this: # # \/\/\/\/\/\/\/\/\/\/| # /\/\/\/\/\/\/\/\/\/\| # # In combination with the "contour walk" underlay, this is the # "German underlay" described here: # http://www.mrxstitch.com/underlay-what-lies-beneath-machine-embroidery/ patch = Patch(color=self.color) sides = self.walk_paths(self.zigzag_underlay_spacing / 2.0, -self.zigzag_underlay_inset) # This organizes the points in each side in the order that they'll be # visited. sides = [sides[0][::2] + list(reversed(sides[0][1::2])), sides[1][1::2] + list(reversed(sides[1][::2]))] # This fancy bit of iterable magic just repeatedly takes a point # from each side in turn. for point in chain.from_iterable(izip(*sides)): patch.add_stitch(point) return patch def do_satin(self): # satin: do a zigzag pattern, alternating between the paths. The # zigzag looks like this to make the satin stitches look perpendicular # to the column: # # /|/|/|/|/|/|/|/| # print >> dbg, "satin", self.zigzag_spacing, self.pull_compensation patch = Patch(color=self.color) sides = self.walk_paths(self.zigzag_spacing, self.pull_compensation) # Like in zigzag_underlay(): take a point from each side in turn. for point in chain.from_iterable(izip(*sides)): patch.add_stitch(point) return patch def to_patches(self, last_patch): # Stitch a variable-width satin column, zig-zagging between two paths. # The algorithm will draw zigzags between each consecutive pair of # beziers. The boundary points between beziers serve as "checkpoints", # allowing the user to control how the zigzags flow around corners. # First, verify that we have valid paths. self.validate_satin_column() patches = [] if self.center_walk_underlay: patches.append(self.do_center_walk()) if self.contour_underlay: patches.append(self.do_contour_underlay()) if self.zigzag_underlay: # zigzag underlay comes after contour walk underlay, so that the # zigzags sit on the contour walk underlay like rail ties on rails. patches.append(self.do_zigzag_underlay()) patches.append(self.do_satin()) return patches class Polyline(EmbroideryElement): # Handle a element, which is treated as a set of points to # stitch exactly. # # elements are pretty rare in SVG, from what I can tell. # Anything you can do with a can also be done with a

, and # much more. # # Notably, EmbroiderModder2 uses elements when converting from # common machine embroidery file formats to SVG. Handling those here lets # users use File -> Import to pull in existing designs they may have # obtained, for example purchased fonts. @property def points(self): # example: "1,2 0,0 1.5,3 4,2" points = self.node.get('points') points = points.split(" ") points = [[float(coord) for coord in point.split(",")] for point in points] return points @property def path(self): # A polyline is a series of connected line segments described by their # points. In order to make use of the existing logic for incorporating # svg transforms that is in our superclass, we'll convert the polyline # to a degenerate cubic superpath in which the bezier handles are on # the segment endpoints. path = [[[point[:], point[:], point[:]] for point in self.points]] return path @property @cache def csp(self): csp = self.parse_path() return csp @property def color(self): # EmbroiderModder2 likes to use the `stroke` property directly instead # of CSS. return self.get_style("stroke") or self.node.get("stroke") @property def stitches(self): # For a , we'll stitch the points exactly as they exist in # the SVG, with no stitch spacing interpolation, flattening, etc. # See the comments in the parent class's parse_path method for a # description of the CSP data structure. stitches = [point for handle_before, point, handle_after in self.csp[0]] return stitches def to_patches(self, last_patch): patch = Patch(color=self.color) for stitch in self.stitches: patch.add_stitch(inkstitch.Point(*stitch)) return [patch] def detect_classes(node): if node.tag == SVG_POLYLINE_TAG: return [Polyline] else: element = EmbroideryElement(node) if element.get_boolean_param("satin_column"): return [SatinColumn] else: classes = [] if element.get_style("fill"): if element.get_boolean_param("auto_fill", True): classes.append(AutoFill) else: classes.append(Fill) if element.get_style("stroke"): classes.append(Stroke) if element.get_boolean_param("stroke_first", False): classes.reverse() return classes class Patch: def __init__(self, color=None, stitches=None, trim_after=False, stop_after=False): self.color = color self.stitches = stitches or [] self.trim_after = trim_after self.stop_after = stop_after def __add__(self, other): if isinstance(other, Patch): return Patch(self.color, self.stitches + other.stitches) else: raise TypeError("Patch can only be added to another Patch") def add_stitch(self, stitch): self.stitches.append(stitch) def reverse(self): return Patch(self.color, self.stitches[::-1]) def process_stop_after(stitches): # The user wants the machine to pause after this patch. This can # be useful for applique and similar on multi-needle machines that # normally would not stop between colors. # # On such machines, the user assigns needles to the colors in the # design before starting stitching. C01, C02, etc are normal # needles, but C00 is special. For a block of stitches assigned # to C00, the machine will continue sewing with the last color it # had and pause after it completes the C00 block. # # That means we need to introduce an artificial color change # shortly before the current stitch so that the user can set that # to C00. We'll go back 3 stitches and do that: if len(stitches) >= 3: stitches[-3].stop = True # and also add a color change on this stitch, completing the C00 # block: stitches[-1].stop = True # reference for the above: https://github.com/lexelby/inkstitch/pull/29#issuecomment-359175447 def process_trim(stitches, next_stitch): # DST (and maybe other formats?) has no actual TRIM instruction. # Instead, 3 sequential JUMPs cause the machine to trim the thread. # # To support both DST and other formats, we'll add a TRIM and two # JUMPs. The TRIM will be converted to a JUMP by libembroidery # if saving to DST, resulting in the 3-jump sequence. delta = next_stitch - stitches[-1] delta = delta * (1/4.0) pos = stitches[-1] for i in xrange(3): pos += delta stitches.append(inkstitch.Stitch(pos.x, pos.y, stitches[-1].color, jump=True)) # first one should be TRIM instead of JUMP stitches[-3].jump = False stitches[-3].trim = True def add_tie(stitches, tie_path): color = tie_path[0].color tie_path = cut_path(tie_path, 0.6) tie_stitches = running_stitch(tie_path, 0.3) tie_stitches = [inkstitch.Stitch(*stitch, color=color) for stitch in tie_stitches] stitches.extend(tie_stitches[1:]) stitches.extend(list(reversed(tie_stitches))[1:]) def add_tie_off(stitches): if not stitches: return add_tie(stitches, list(reversed(stitches))) def add_tie_in(stitches, upcoming_stitches): if not upcoming_stitches: return add_tie(stitches, upcoming_stitches) def add_ties(original_stitches): """Add tie-off before and after trims, jumps, and color changes.""" # we're going to copy most stitches over, adding tie in/off as needed stitches = [] need_tie_in = True for i, stitch in enumerate(original_stitches): is_special = stitch.trim or stitch.jump or stitch.stop if is_special and not need_tie_in: add_tie_off(stitches) stitches.append(stitch) need_tie_in = True elif need_tie_in and not is_special: stitches.append(stitch) add_tie_in(stitches, original_stitches[i:]) need_tie_in = False else: stitches.append(stitch) # add tie-off at the end if we ended on a normal stitch if not is_special: add_tie_off(stitches) # overwrite the stitch plan with our new one that contains ties original_stitches[:] = stitches def patches_to_stitches(patch_list, collapse_len_px=3.0): stitches = [] last_stitch = None last_color = None need_trim = False for patch in patch_list: if not patch.stitches: continue jump_stitch = True for stitch in patch.stitches: if last_stitch and last_color == patch.color: l = (stitch - last_stitch).length() if l <= 0.1: # filter out duplicate successive stitches jump_stitch = False continue if jump_stitch: # consider collapsing jump stitch, if it is pretty short if l < collapse_len_px: # dbg.write("... collapsed\n") jump_stitch = False if stitches and last_color and last_color != patch.color: # add a color change stitches.append(inkstitch.Stitch(last_stitch.x, last_stitch.y, last_color, stop=True)) if need_trim: process_trim(stitches, stitch) need_trim = False if jump_stitch: stitches.append(inkstitch.Stitch(stitch.x, stitch.y, patch.color, jump=True)) stitches.append(inkstitch.Stitch(stitch.x, stitch.y, patch.color, jump=False)) jump_stitch = False last_stitch = stitch last_color = patch.color if patch.trim_after: need_trim = True if patch.stop_after: process_stop_after(stitches) add_ties(stitches) return stitches def stitches_to_polylines(stitches): polylines = [] last_color = None last_stitch = None trimming = False for stitch in stitches: if stitch.color != last_color or stitch.trim: trimming = True polylines.append([stitch.color, []]) if trimming and (stitch.jump or stitch.trim): continue trimming = False polylines[-1][1].append(stitch.as_tuple()) last_color = stitch.color last_stitch = stitch return polylines def emit_inkscape(parent, stitches): transform = get_viewbox_transform(parent.getroottree().getroot()) # we need to correct for the viewbox transform = simpletransform.invertTransform(transform) transform = simpletransform.formatTransform(transform) for color, polyline in stitches_to_polylines(stitches): # dbg.write('polyline: %s %s\n' % (color, repr(polyline))) inkex.etree.SubElement(parent, inkex.addNS('polyline', 'svg'), {'style': simplestyle.formatStyle( {'stroke': color if color is not None else '#000000', 'stroke-width': "0.4", 'fill': 'none'}), 'points': " ".join(",".join(str(coord) for coord in point) for point in polyline), 'transform': transform }) def get_elements(effect): elements = [] nodes = get_nodes(effect) for node in nodes: classes = detect_classes(node) elements.extend(cls(node) for cls in classes) return elements def elements_to_patches(elements): patches = [] for element in elements: if patches: last_patch = patches[-1] else: last_patch = None patches.extend(element.embroider(last_patch)) return patches class Embroider(inkex.Effect): def __init__(self, *args, **kwargs): inkex.Effect.__init__(self) self.OptionParser.add_option("-c", "--collapse_len_mm", action="store", type="float", dest="collapse_length_mm", default=3.0, help="max collapse length (mm)") self.OptionParser.add_option("--hide_layers", action="store", type="choice", choices=["true", "false"], dest="hide_layers", default="true", help="Hide all other layers when the embroidery layer is generated") self.OptionParser.add_option("-O", "--output_format", action="store", type="string", dest="output_format", default="csv", help="Output file extenstion (default: csv)") self.OptionParser.add_option("-P", "--path", action="store", type="string", dest="path", default=".", help="Directory in which to store output file") self.OptionParser.add_option("-F", "--output-file", action="store", type="string", dest="output_file", help="Output filename.") self.OptionParser.add_option("-b", "--max-backups", action="store", type="int", dest="max_backups", default=5, help="Max number of backups of output files to keep.") self.OptionParser.usage += _("\n\nSeeing a 'no such option' message? Please restart Inkscape to fix.") def get_output_path(self): if self.options.output_file: output_path = os.path.join(self.options.path, self.options.output_file) else: svg_filename = self.document.getroot().get(inkex.addNS('docname', 'sodipodi'), "embroidery.svg") csv_filename = svg_filename.replace('.svg', '.%s' % self.options.output_format) output_path = os.path.join(self.options.path, csv_filename) def add_suffix(path, suffix): if suffix > 0: path = "%s.%s" % (path, suffix) return path def move_if_exists(path, suffix=0): source = add_suffix(path, suffix) if suffix >= self.options.max_backups: return dest = add_suffix(path, suffix + 1) if os.path.exists(source): move_if_exists(path, suffix + 1) if os.path.exists(dest): os.remove(dest) os.rename(source, dest) move_if_exists(output_path) return output_path def hide_layers(self): for g in self.document.getroot().findall(SVG_GROUP_TAG): if g.get(inkex.addNS("groupmode", "inkscape")) == "layer": g.set("style", "display:none") def effect(self): # Printing anything other than a valid SVG on stdout blows inkscape up. old_stdout = sys.stdout sys.stdout = sys.stderr self.patch_list = [] self.elements = get_elements(self) if not self.elements: if self.selected: inkex.errormsg(_("No embroiderable paths selected.")) else: inkex.errormsg(_("No embroiderable paths found in document.")) inkex.errormsg(_("Tip: use Path -> Object to Path to convert non-paths before embroidering.")) return if self.options.hide_layers: self.hide_layers() patches = elements_to_patches(self.elements) stitches = patches_to_stitches(patches, self.options.collapse_length_mm * PIXELS_PER_MM) inkstitch.write_embroidery_file(self.get_output_path(), stitches, self.document.getroot()) new_layer = inkex.etree.SubElement(self.document.getroot(), SVG_GROUP_TAG, {}) new_layer.set('id', self.uniqueId("embroidery")) new_layer.set(inkex.addNS('label', 'inkscape'), _('Embroidery')) new_layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer') emit_inkscape(new_layer, stitches) sys.stdout = old_stdout if __name__ == '__main__': sys.setrecursionlimit(100000) e = Embroider() try: e.affect() except KeyboardInterrupt: print >> dbg, "interrupted!" print >> dbg, traceback.format_exc() dbg.flush()