#!/usr/bin/python # # documentation: see included index.html # LICENSE: # Copyright 2010 by Jon Howell, # Originally licensed under GPLv3. # Copyright 2015 by Bas Wijnen . # New parts are licensed under AGPL3 or later. # (Note that this means this work is licensed under the common part of those two: AGPL version 3.) # # Important resources: # lxml interface for walking SVG tree: # http://codespeak.net/lxml/tutorial.html#elementpath # Inkscape library for extracting paths from SVG: # http://wiki.inkscape.org/wiki/index.php/Python_modules_for_extensions#simplepath.py # Shapely computational geometry library: # http://gispython.org/shapely/manual.html#multipolygons # Embroidery file format documentation: # http://www.achatina.de/sewing/main/TECHNICL.HTM import sys sys.path.append("/usr/share/inkscape/extensions") import os import subprocess from copy import deepcopy import time import inkex import simplepath import simplestyle import simpletransform from bezmisc import bezierlength, beziertatlength, bezierpointatt from cspsubdiv import cspsubdiv import cubicsuperpath import PyEmb import math import random import operator import lxml.etree as etree from lxml.builder import E import shapely.geometry as shgeo import shapely.affinity as affinity from pprint import pformat dbg = open("/tmp/embroider-debug.txt", "w") PyEmb.dbg = dbg #pixels_per_millimeter = 90.0 / 25.4 #this actually makes each pixel worth one tenth of a millimeter pixels_per_millimeter = 10 # a 0.5pt stroke becomes a straight line. STROKE_MIN = 0.5 def parse_boolean(s): if isinstance(s, bool): return s else: return s and (s.lower() in ('yes', 'y', 'true', 't', '1')) def get_param(node, param, default): value = node.get("embroider_" + param) if value is None or not value.strip(): return default return value.strip() def get_boolean_param(node, param, default=False): value = get_param(node, param, default) return parse_boolean(value) def get_float_param(node, param, default=None): value = get_param(node, param, default) try: return float(value) except ValueError: return default def get_int_param(node, param, default=None): value = get_param(node, param, default) try: return int(value) except ValueError: return default def parse_path(node): path = cubicsuperpath.parsePath(node.get("d")) # print >> sys.stderr, pformat(path) # start with the identity transform transform = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]] # combine this node's transform with all parent groups' transforms transform = simpletransform.composeParents(node, transform) # apply the combined transform to this node's path simpletransform.applyTransformToPath(transform, path) return path def flatten(path, flatness): """approximate a path containing beziers with a series of points""" cspsubdiv(path, flatness) flattened = [] for comp in path: vertices = [] for ctl in comp: vertices.append((ctl[1][0], ctl[1][1])) flattened.append(vertices) return flattened def bboxarea(poly): x0=None x1=None y0=None y1=None for pt in poly: if (x0==None or pt[0]x1): x1 = pt[0] if (y0==None or pt[1]y1): y1 = pt[1] return (x1-x0)*(y1-y0) def area(poly): return bboxarea(poly) def byarea(a,b): return -cmp(area(a), area(b)) def cspToShapelyPolygon(path): poly_ary = [] for sub_path in path: point_ary = [] last_pt = None for pt in sub_path: if (last_pt!=None): vp = (pt[0]-last_pt[0],pt[1]-last_pt[1]) dp = math.sqrt(math.pow(vp[0],2.0)+math.pow(vp[1],2.0)) #dbg.write("dp %s\n" % dp) if (dp > 0.01): # I think too-close points confuse shapely. point_ary.append(pt) last_pt = pt else: last_pt = pt poly_ary.append(point_ary) # shapely's idea of "holes" are to subtract everything in the second set # from the first. So let's at least make sure the "first" thing is the # biggest path. poly_ary.sort(byarea) polygon = shgeo.MultiPolygon([(poly_ary[0], poly_ary[1:])]) return polygon def shapelyCoordsToSvgD(geo): coords = list(geo.coords) new_path = [] new_path.append(['M', coords[0]]) for c in coords[1:]: new_path.append(['L', c]) return simplepath.formatPath(new_path) def shapelyLineSegmentToPyTuple(shline): tuple = ((shline.coords[0][0],shline.coords[0][1]), (shline.coords[1][0],shline.coords[1][1])) return tuple def dupNodeAttrs(node): n2 = E.node() for k in node.attrib.keys(): n2.attrib[k] = node.attrib[k] del n2.attrib["id"] del n2.attrib["d"] return n2 class Patch: def __init__(self, color, sortorder, stitches=None): self.color = color self.sortorder = sortorder if (stitches!=None): self.stitches = stitches else: self.stitches = [] def addStitch(self, stitch): self.stitches.append(stitch) def reverse(self): return Patch(self.color, self.sortorder, self.stitches[::-1]) class DebugHole: pass class PatchList: def __init__(self, patches): self.patches = patches def __len__(self): return len(self.patches) def sort_by_sortorder(self): def by_sort_order(a,b): return cmp(a.sortorder, b.sortorder) self.patches.sort(by_sort_order) def partition_by_color(self): self.sort_by_sortorder() #dbg.write("Sorted by sortorder:\n"); #dbg.write(" %s\n" % ("\n".join(map(lambda p: str(p.sortorder), self.patches)))) out = [] lastPatch = None for patch in self.patches: if (lastPatch!=None and patch.sortorder==lastPatch.sortorder): out[-1].patches.append(patch) else: out.append(PatchList([patch])) lastPatch = patch #dbg.write("Emitted %s partitions\n" % len(out)) return out def tsp_by_color(self): list_of_patchLists = self.partition_by_color() for patchList in list_of_patchLists: patchList.traveling_salesman() return PatchList(reduce(operator.add, map(lambda pl: pl.patches, list_of_patchLists))) # # TODO apparently dead code; replaced by partition_by_color above # def clump_like_colors_together(self): # out = PatchList([]) # lastPatch = None # for patch in self.patches: # if (lastPatch!=None and patch.color==lastPatch.color): # out.patches[-1] = Patch( # out.patches[-1].color, # out.patches[-1].sortorder, # out.patches[-1].stitches+patch.stitches) # else: # out.patches.append(patch) # lastPatch = patch # return out def get(self, i): if (i<0 or i>=len(self.patches)): return None return self.patches[i] def cost(self, a, b): if (a is None or b is None): rc = 0.0 else: rc = (a.stitches[-1] - b.stitches[0]).length() #dbg.write("cost(%s, %s) = %5.1f\n" % (a, b, rc)) return rc def total_cost(self): total = 0 for i in xrange(1, len(self.patches)): total += self.cost(self.get(i-1), self.get(i)) return total def try_swap(self, i, j): # i,j are indices; #dbg.write("swap(%d, %d)\n" % (i,j)) i, j = sorted((i, j)) neighbors = abs(i - j) == 1 if neighbors: oldCost = sum((self.cost(self.get(i-1), self.get(i)), self.cost(self.get(i), self.get(j)), self.cost(self.get(j), self.get(j+1)))) else: oldCost = sum((self.cost(self.get(i-1), self.get(i)), self.cost(self.get(i), self.get(i+1)), self.cost(self.get(j-1), self.get(j)), self.cost(self.get(j), self.get(j+1)))) npi = self.get(j) npj = self.get(i) rpi = npi.reverse() rpj = npj.reverse() options = [ (npi,npj), (rpi,npj), (npi,rpj), (rpi,rpj), ] def costOf(np): (npi,npj) = np if abs(i - j) == 1: return sum((self.cost(self.get(i-1), npi), self.cost(npi, npj), self.cost(npj, self.get(j+1)))) else: return sum((self.cost(self.get(i-1), npi), self.cost(npi, self.get(i+1)), self.cost(self.get(j-1), npj), self.cost(npj, self.get(j+1)))) costs = map(lambda o: (costOf(o), o), options) costs.sort() (cost,option) = costs[0] savings = oldCost - cost if (savings > 0): self.patches[i] = option[0] self.patches[j] = option[1] success = "!" else: success = "." #dbg.write("old %5.1f new %5.1f savings: %5.1f\n" % (oldCost, cost, savings)) return success def try_reverse(self, i): #dbg.write("reverse(%d)\n" % i) oldCost = (self.cost(self.get(i-1), self.get(i)) +self.cost(self.get(i), self.get(i+1))) reversed = self.get(i).reverse() newCost = (self.cost(self.get(i-1), reversed) +self.cost(reversed, self.get(i+1))) savings = oldCost - newCost if (savings > 0.0): self.patches[i] = reversed success = "#" else: success = "_" return success def traveling_salesman(self): # shockingly, this is non-optimal and pretty much non-efficient. Sorry. self.pointList = [] for patch in self.patches: def visit(idx): ep = deepcopy(patch.stitches[idx]) ep.patch = patch self.pointList.append(ep) visit(0) visit(-1) def linear_min(list, func): min_item = None min_value = None for item in list: value = func(item) #dbg.write('linear_min %s: value %s => %s (%s)\n' % (func, item, value, value 1.0: break for point in min_path: takePatchStartingAtPoint(point) # install the initial result self.patches = sortedPatchList.patches if 1: # Then hill-climb. #dbg.write("len(self.patches) = %d\n" % len(self.patches)) count = 0 successStr = "" while (count < 100): i = random.randint(0, len(self.patches)-1) j = random.randint(0, len(self.patches)-1) successStr += self.try_swap(i,j) count += 1 # tidy up at end as best we can for i in range(len(self.patches)): successStr += self.try_reverse(i) #dbg.write("success: %s\n" % successStr) class EmbroideryObject: def __init__(self, patchList, row_spacing_px): self.patchList = patchList self.row_spacing_px = row_spacing_px def make_preamble_stitch(self, lastp, nextp): def fromPolar(r, phi): x = r * math.cos(phi) y = r * math.sin(phi) return (x, y) def toPolar(x, y): r = math.sqrt(x ** 2 + y ** 2) if r == 0: phi = 0 elif y == 0: phi = 0 if x > 0 else math.pi else: phi = cmp(y, 0) * math.acos(x / r) return (r, phi) v = nextp - lastp (r, phi) = toPolar(v.x, v.y) PREAMBLE_MAX_DIST = 0.5 * pixels_per_millimeter # 1/2mm if r < PREAMBLE_MAX_DIST: # nextp is close enough to lastp, so we don't generate # extra points in between, but just use nextp return nextp r = PREAMBLE_MAX_DIST (x, y) = fromPolar(r, phi) return PyEmb.Point(x, y) + lastp def emit_file(self, filename, output_format, collapse_len_px, add_preamble): emb = PyEmb.Embroidery() lastStitch = None lastColor = None for patch in self.patchList.patches: jumpStitch = True for stitch in patch.stitches: if lastStitch and lastColor == patch.color: c = math.sqrt((stitch.x - lastStitch.x) ** 2 + (stitch.y - lastStitch.y) ** 2) #dbg.write("stitch length: %f (%d/%d -> %d/%d)\n" % (c, lastStitch.x, lastStitch.y, stitch.x, stitch.y)) if c == 0: # filter out duplicate successive stitches jumpStitch = False continue if jumpStitch: # consider collapsing jump stich, if it is pretty short if c < collapse_len_px: #dbg.write("... collapsed\n") jumpStitch = False #dbg.write("stitch color %s\n" % patch.color) newStitch = PyEmb.Point(stitch.x, -stitch.y) newStitch.color = patch.color newStitch.jumpStitch = jumpStitch emb.addStitch(newStitch) if jumpStitch and add_preamble != "0": locs = [ newStitch ] i = 0 nextp = PyEmb.Point(patch.stitches[i].x, -patch.stitches[i].y) try: for j in xrange(1, 4): if locs[-1] == nextp: i += 1 nextp = PyEmb.Point(patch.stitches[i].x, -patch.stitches[i].y) locs.append(self.make_preamble_stitch(locs[-1], nextp)) except IndexError: # happens when the patch is very short and we increment i beyond the number of stitches pass #dbg.write("preamble locations: %s\n" % locs) for j in add_preamble[1:]: try: stitch = deepcopy(locs[int(j)]) stitch.color = patch.color stitch.jumpStitch = False emb.addStitch(stitch) except IndexError: pass jumpStitch = False lastStitch = newStitch lastColor = patch.color dx, dy = emb.translate_to_origin() emb.scale(1.0/pixels_per_millimeter) fp = open(filename, "wb") if output_format == "melco": fp.write(emb.export_melco(dbg)) elif output_format == "csv": fp.write(emb.export_csv(dbg)) elif output_format == "gcode": fp.write(emb.export_gcode(dbg)) fp.close() emb.scale(pixels_per_millimeter) emb.translate(dx, dy) return emb def emit_inkscape(self, parent, emb): emb.scale((1, -1)); for color, path in emb.export_paths(dbg): dbg.write('path: %s %s\n' % (color, repr(path))) inkex.etree.SubElement(parent, inkex.addNS('path', 'svg'), { 'style':simplestyle.formatStyle( { 'stroke': color if color is not None else '#000000', 'stroke-width':"0.25", 'fill': 'none' }), 'd':simplepath.formatPath(path), }) def bbox(self): x = [] y = [] for patch in self.patchList.patches: for stitch in patch.stitches: x.append(stitch.x) y.append(stitch.y) return (min(x), min(y), max(x), max(y)) class SortOrder: def __init__(self, threadcolor, layer, preserve_layers): self.threadcolor = threadcolor if (preserve_layers): #dbg.write("preserve_layers is true: %s %s\n" % (layer, threadcolor)); self.sorttuple = (layer, threadcolor) else: #dbg.write("preserve_layers is false:\n"); self.sorttuple = (threadcolor,) def append(self, criterion): self.sorttuple += (criterion,) def __cmp__(self, other): return cmp(self.sorttuple, other.sorttuple) def __repr__(self): return "sort %s color %s" % (self.sorttuple, self.threadcolor) class Embroider(inkex.Effect): def __init__(self, *args, **kwargs): #dbg.write("args: %s\n" % repr(sys.argv)) inkex.Effect.__init__(self) self.stacking_order_counter = 0 self.OptionParser.add_option("-r", "--row_spacing_mm", action="store", type="float", dest="row_spacing_mm", default=0.4, help="row spacing (mm)") self.OptionParser.add_option("-z", "--zigzag_spacing_mm", action="store", type="float", dest="zigzag_spacing_mm", default=1.0, help="zigzag spacing (mm)") self.OptionParser.add_option("-l", "--max_stitch_len_mm", action="store", type="float", dest="max_stitch_len_mm", default=3.0, help="max stitch length (mm)") self.OptionParser.add_option("--running_stitch_len_mm", action="store", type="float", dest="running_stitch_len_mm", default=3.0, help="running stitch length (mm)") self.OptionParser.add_option("-c", "--collapse_len_mm", action="store", type="float", dest="collapse_len_mm", default=0.0, help="max collapse length (mm)") self.OptionParser.add_option("-f", "--flatness", action="store", type="float", dest="flat", default=0.1, help="Minimum flatness of the subdivided curves") self.OptionParser.add_option("-o", "--preserve_layers", action="store", type="choice", choices=["true","false"], dest="preserve_layers", default="false", help="Sort by stacking order instead of color") self.OptionParser.add_option("-H", "--hatch_filled_paths", action="store", type="choice", choices=["true","false"], dest="hatch_filled_paths", default="false", help="Use hatching lines instead of equally-spaced lines to fill paths") self.OptionParser.add_option("--hide_layers", action="store", type="choice", choices=["true","false"], dest="hide_layers", default="true", help="Hide all other layers when the embroidery layer is generated") self.OptionParser.add_option("-p", "--add_preamble", action="store", type="choice", choices=["0","010","01010","01210","012101210"], dest="add_preamble", default="0", help="Add preamble") self.OptionParser.add_option("-O", "--output_format", action="store", type="choice", choices=["melco", "csv", "gcode"], dest="output_format", default="melco", help="File output format") self.OptionParser.add_option("-F", "--filename", action="store", type="string", dest="filename", default="embroider-output.exp", help="Name (and possibly path) of output file") self.patches = [] self.layer_cache = {} def get_sort_order(self, threadcolor, node): #print >> sys.stderr, "node", node.get("id"), self.layer_cache.get(node.get("id")) return SortOrder(threadcolor, self.layer_cache.get(node.get("id")), self.options.preserve_layers=="true") def process_one_path(self, node, shpath, threadcolor, sortorder, angle): #self.add_shapely_geo_to_svg(shpath.boundary, color="#c0c000") hatching = get_boolean_param(node, "hatching", self.hatching) row_spacing_px = get_float_param(node, "row_spacing", self.row_spacing_px) max_stitch_len_px = get_float_param(node, "max_stitch_length", self.max_stitch_len_px) rows_of_segments = self.intersect_region_with_grating(shpath, row_spacing_px, angle) groups_of_segments = self.pull_runs(rows_of_segments, shpath, row_spacing_px) #print >> sys.stderr, len(groups_of_segments) patches = [] for group_of_segments in groups_of_segments: patch = Patch(color=threadcolor,sortorder=sortorder) first_segment = True swap = False last_length = 0 last_end = None for segment in group_of_segments: # want to try to keep needle-holes as far apart as possible # (tatami fill) # check last stitch in last row. If less than half of max stitch length, # go straight for the midpoint between the last two stitches in the last # row. Otherwise, go for the midpoint between the last stitch and the end # of the last row, then go for the midpoint between the last two stitches (beg, end) = segment if (swap): (beg,end)=(end,beg) if not hatching: swap = not swap beg = PyEmb.Point(*beg) end = PyEmb.Point(*end) along = (end - beg).unit() segment_length = (end - beg).length() # We want to try to interleave stitches so that the needle- # holes are as far apart as possible from the previous row's # holes. It should look like this: # # ---1---2---3---4-| # -8---7---6---5---| # # This represents filling a region with two successive rows # of stitching, where the numbers indicate the positions that # the needle punctures the fabric and engages the bobbin # thread. We need to make sure that stitch 5 falls between # 3 and 4. # # The | characters indicate the right side of the fill area. # The trick is that the space after stitch 4 is entirely # dependent on how much space is left after filling the row # with stitches of length max_stitch_len_px (M). Call that # remainder R. It could be anywhere from 0 to M. # # There's one more wrinkle. In reality, if the side of the # fill region is not perpendicular, we have this: # # ---1---2---3---4--/ # -8---7---6---5---/ # # In this example, R is shortened by the angled side. We can # figure out how much it's shortened by taking the dot product # of the side segment and a unit vector in the direction of the # second row, to get the projection, P: # # ---1---2---3---4-P/ # -8---7---6---5---/ # # Therefore, stitch 5 is at position D = R - P + M/2. It's # possible that D may be greater than M, so we need to stitch # one or more times before D. It's also possible, in extreme # fill shapes, that D is negative. In that case we should # add successive Ms until we get back into the fill region. # # Geometry is hard. d = last_length if first_segment: first_segment = False else: side = beg - last_end d -= side * along d += max_stitch_len_px / 2.0 while d < 0: d += max_stitch_len_px patch.addStitch(beg) runup = [] while d > 0: if d < segment_length: runup.insert(0, beg + along * d) d -= max_stitch_len_px for stitch in runup: patch.addStitch(stitch) # Now we'll set d as the distance of the last stitch along the # segment and continue on. d = (patch.stitches[-1] - beg) * along d += max_stitch_len_px while d < segment_length: patch.addStitch(beg + d * along) d += max_stitch_len_px # add the endpoint if we're not already there last_length = (end - patch.stitches[-1]).length() last_end = end if last_length > 0.1 * pixels_per_millimeter: # skip the stitch if it's ridiculously short patch.addStitch(end) patches.append(patch) return patches def intersect_region_with_grating(self, shpath, row_spacing_px, angle): # the max line length I'll need to intersect the whole shape is the diagonal (minx, miny, maxx, maxy) = shpath.bounds length = (PyEmb.Point(maxx, maxy) - PyEmb.Point(minx, miny)).length() half_length = length / 2.0 # Now get a unit vector rotated to the requested angle. I use -angle # because shapely rotates clockwise, but my geometry textbooks taught # me to consider angles as counter-clockwise from the X axis. direction = PyEmb.Point(1, 0).rotate(-angle) # and get a normal vector normal = direction.rotate(math.pi/2) # I'll start from the center, move in the normal direction some amount, # and then walk left and right half_length in each direction to create # a line segment in the grating. center = PyEmb.Point((minx + maxx) / 2.0, (miny + maxy) / 2.0) # I need to figure out how far I need to go along the normal to get to # the edge of the shape. To do that, I'll rotate the bounding box # angle degrees clockwise and ask for the new bounding box. The max # and min y tell me how far to go. _, start, _, end = affinity.rotate(shpath, angle, origin='center', use_radians = True).bounds start -= center.y end -= center.y # don't start right at the edge or we'll make a ridiculous single # stitch start += row_spacing_px / 2.0 rows = [] while start < end: p0 = center + normal.mul(start) + direction.mul(half_length) p1 = center + normal.mul(start) - direction.mul(half_length) endpoints = [p0.as_tuple(), p1.as_tuple()] shline = shgeo.LineString(endpoints) res = shline.intersection(shpath) if (isinstance(res, shgeo.MultiLineString)): runs = map(shapelyLineSegmentToPyTuple, res.geoms) else: runs = [shapelyLineSegmentToPyTuple(res)] if self.hatching and len(rows) > 0: rows.append([(rows[-1][0][1], runs[0][0])]) rows.append(runs) start += row_spacing_px return rows def pull_runs(self, rows, shpath, row_spacing_px): # Given a list of rows, each containing a set of line segments, # break the area up into contiguous patches of line segments. # # This is done by repeatedly pulling off the first line segment in # each row and calling that a shape. We have to be careful to make # sure that the line segments are part of the same shape. Consider # the letter "H", with an embroidery angle of 45 degrees. When # we get to the bottom of the lower left leg, the next row will jump # over to midway up the lower right leg. We want to stop there and # start a new patch. # Segments more than this far apart are considered not to be part of # the same run. row_distance_cutoff = row_spacing_px * 1.1 def make_quadrilateral(segment1, segment2): return shgeo.Polygon((segment1[0], segment1[1], segment2[1], segment2[0], segment1[0])) def is_same_run(segment1, segment2): if self.options.hatch_filled_paths: return True if shgeo.LineString(segment1).distance(shgeo.LineString(segment1)) > row_spacing_px * 1.1: return False quad = make_quadrilateral(segment1, segment2) quad_area = quad.area intersection_area = shpath.intersection(quad).area return (intersection_area / quad_area) >= 0.9 #for row in rows: # print >> sys.stderr, len(row) #print >>sys.stderr, "\n".join(str(len(row)) for row in rows) runs = [] count = 0 while (len(rows) > 0): run = [] prev = None for row_num in xrange(len(rows)): row = rows[row_num] first, rest = row[0], row[1:] # TODO: only accept actually adjacent rows here if prev is not None and not is_same_run(prev, first): break run.append(first) prev = first rows[row_num] = rest #print >> sys.stderr, len(run) runs.append(run) rows = [row for row in rows if len(row) > 0] count += 1 return runs def handle_node(self, node): if (node.tag == inkex.addNS('g', 'svg')): #dbg.write("%s\n"%str((id, etree.tostring(node, pretty_print=True)))) #dbg.write("not a path; recursing:\n") for child in node.iter(self.svgpath): self.handle_node(child) return #dbg.write("Node: %s\n"%str((id, etree.tostring(node, pretty_print=True)))) if get_boolean_param(node, "satin_column"): self.patchList.patches.extend(self.satin_column(node)) else: stroke = [] fill = [] if (self.get_style(node, "stroke")!=None): stroke = self.path_to_patch_list(node) if (self.get_style(node, "fill")!=None): fill = self.filled_region_to_patchlist(node) if get_boolean_param(node, "stroke_first", False): for patch in stroke: patch.sortorder.append(0) for patch in fill: patch.sortorder.append(1) self.patchList.patches.extend(stroke) self.patchList.patches.extend(fill) def get_style(self, node, style_name): style = simplestyle.parseStyle(node.get("style")) if (style_name not in style): return None value = style[style_name] if (value==None or value=="none"): return None return value def cache_layers(self): self.layer_cache = {} layer_tag = inkex.addNS("g", "svg") group_attr = inkex.addNS('groupmode', 'inkscape') def is_layer(node): return node.tag == layer_tag and node.get(group_attr) == "layer" def process(node, layer=0): if is_layer(node): layer += 1 else: self.layer_cache[node.get("id")] = layer for child in node: layer = process(child, layer) return layer process(self.document.getroot()) def effect(self): if self.options.preserve_layers == "true": self.cache_layers() #print >> sys.stderr, "cached stacking order:", self.stacking_order self.row_spacing_px = self.options.row_spacing_mm * pixels_per_millimeter self.zigzag_spacing_px = self.options.zigzag_spacing_mm * pixels_per_millimeter self.max_stitch_len_px = self.options.max_stitch_len_mm*pixels_per_millimeter self.running_stitch_len_px = self.options.running_stitch_len_mm*pixels_per_millimeter self.collapse_len_px = self.options.collapse_len_mm*pixels_per_millimeter self.hatching = self.options.hatch_filled_paths == "true" self.svgpath = inkex.addNS('path', 'svg') self.patchList = PatchList([]) dbg.write("starting nodes: %s" % time.time()) dbg.flush() for node in self.selected.itervalues(): self.handle_node(node) dbg.write("finished nodes: %s" % time.time()) dbg.flush() if not self.patchList: inkex.errormsg("No paths selected.") return dbg.write("starting tsp: %s" % time.time()) self.patchList = self.patchList.tsp_by_color() dbg.write("finished tsp: %s" % time.time()) #dbg.write("patch count: %d\n" % len(self.patchList.patches)) if self.options.hide_layers: self.hide_layers() eo = EmbroideryObject(self.patchList, self.row_spacing_px) emb = eo.emit_file(self.options.filename, self.options.output_format, self.collapse_len_px, self.options.add_preamble) new_layer = inkex.etree.SubElement(self.document.getroot(), inkex.addNS('g', 'svg'), {}) new_layer.set('id', self.uniqueId("embroidery")) new_layer.set(inkex.addNS('label', 'inkscape'), 'Embroidery') new_layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer') eo.emit_inkscape(new_layer, emb) def emit_inkscape_bbox(self, parent, eo): (x0, y0, x1, y1) = eo.bbox() new_path = [] new_path.append(['M', (x0,y0)]) new_path.append(['L', (x1,y0)]) new_path.append(['L', (x1,y1)]) new_path.append(['L', (x0,y1)]) new_path.append(['L', (x0,y0)]) inkex.etree.SubElement(parent, inkex.addNS('path', 'svg'), { 'style':simplestyle.formatStyle( { 'stroke': '#ff00ff', 'stroke-width':str(1), 'fill': 'none' }), 'd':simplepath.formatPath(new_path), }) def hide_layers(self): for g in self.document.getroot().findall(inkex.addNS("g","svg")): if g.get(inkex.addNS("groupmode", "inkscape")) == "layer": g.set("style", "display:none") def path_to_patch_list(self, node): threadcolor = simplestyle.parseStyle(node.get("style"))["stroke"] stroke_width_str = simplestyle.parseStyle(node.get("style"))["stroke-width"] if (stroke_width_str.endswith("px")): # don't really know how we should be doing unit conversions. # but let's hope px are kind of like pts? stroke_width_str = stroke_width_str[:-2] stroke_width = float(stroke_width_str) #dbg.write("stroke_width is <%s>\n" % repr(stroke_width)) #dbg.flush() running_stitch_len_px = get_float_param(node, "stitch_length", self.running_stitch_len_px) zigzag_spacing_px = get_float_param(node, "zigzag_spacing", self.zigzag_spacing_px) repeats = get_int_param(node, "repeats", 1) sortorder = self.get_sort_order(threadcolor, node) paths = flatten(parse_path(node), self.options.flat) # regularize the points lists. # (If we're parsing beziers, there will be a list of multi-point # subarrays.) patches = [] for path in paths: path = [PyEmb.Point(x, y) for x, y in path] if (stroke_width <= STROKE_MIN): #dbg.write("self.max_stitch_len_px = %s\n" % self.max_stitch_len_px) patch = self.stroke_points(path, running_stitch_len_px, 0.0, repeats, threadcolor, sortorder) else: patch = self.stroke_points(path, zigzag_spacing_px*0.5, stroke_width, repeats, threadcolor, sortorder) patches.extend(patch) return patches def stroke_points(self, emb_point_list, zigzag_spacing_px, stroke_width, repeats, threadcolor, sortorder): patch = Patch(color=threadcolor, sortorder=sortorder) p0 = emb_point_list[0] rho = 0.0 fact = 1 for repeat in xrange(repeats): if repeat % 2 == 0: order = range(1, len(emb_point_list)) else: order = range(-2, -len(emb_point_list) - 1, -1) for segi in order: p1 = emb_point_list[segi] # how far we have to go along segment seg_len = (p1 - p0).length() if (seg_len == 0): continue # vector pointing along segment along = (p1 - p0).unit() # vector pointing to edge of stroke width perp = along.rotate_left().mul(stroke_width*0.5) # iteration variable: how far we are along segment while (rho <= seg_len): left_pt = p0+along.mul(rho)+perp.mul(fact) patch.addStitch(left_pt) rho += zigzag_spacing_px fact = -fact p0 = p1 rho -= seg_len return [patch] def filled_region_to_patchlist(self, node): angle = math.radians(float(get_float_param(node,'angle',0))) paths = flatten(parse_path(node), self.options.flat) shapelyPolygon = cspToShapelyPolygon(paths) threadcolor = simplestyle.parseStyle(node.get("style"))["fill"] sortorder = self.get_sort_order(threadcolor, node) return self.process_one_path( node, shapelyPolygon, threadcolor, sortorder, angle) def fatal(self, message): print >> sys.stderr, "error:", message sys.exit(1) def validate_satin_column(self, node, csp): node_id = node.get("id") if len(csp) != 2: self.fatal("satin column: object %s invalid: expected exactly two sub-paths, but there are %s" % (node_id, len(csp))) if self.get_style(node, "fill")!=None: self.fatal("satin column: object %s has a fill (but should not)" % node_id) if len(csp[0]) != len(csp[1]): self.fatal("satin column: object %s has two paths with an unequal number of points (%s and %s)" % (node_id, len(csp[0]), len(csp[1]))) def satin_column(self, node): # Stitch a variable-width satin column, zig-zagging between two paths. # The node should have exactly two paths with no fill. Each # path should have the same number of points. The two paths will be # split into segments, and each segment will have a number of zigzags # defined by the length of the longer of the two segments, divided # by the zigzag spacing parameter. id = node.get("id") # First, verify that we have a valid node. csp = parse_path(node) self.validate_satin_column(node, csp) # fetch parameters zigzag_spacing_px = get_float_param(node, "zigzag_spacing", self.zigzag_spacing_px) # A path is a collection of tuples, each of the form: # # (control_before, point, control_after) # # A bezier curve segment is defined by an endpoint, a control point, # a second control point, and a final endpoint. A path is a bunch of # bezier curves strung together. One could represent a path as a set # of four-tuples, but there would be redundancy because the ending # point of one bezier is the starting point of the next. Instead, a # path is a set of 3-tuples as shown above, and one must construct # each bezier curve by taking the appropriate endpoints and control # points. Bleh. It should be noted that a straight segment is # represented by having the control point on each end equal to that # end's point. # # A "superpath" is a collection of paths that are all in one object. # The "cubic" bit in "cubic superpath" is because the bezier curves # inkscape uses involve cubic polynomials. # # In a path, each element in the 3-tuple is itself a tuple of (x, y). # Tuples all the way down. Hasn't anyone heard of using classes? path1 = csp[0] path2 = csp[1] threadcolor = simplestyle.parseStyle(node.get("style"))["stroke"] sortorder = self.get_sort_order(threadcolor, node) patch = Patch(color=threadcolor, sortorder=sortorder) # Take each bezier segment in turn, drawing zigzags between the two # paths in that segment. for segment in xrange(1, len(path1)): # construct the current bezier segments bezier1 = (path1[segment - 1][1], # point from previous 3-tuple path1[segment - 1][2], # "after" control point from previous 3-tuple path1[segment][0], # "before" control point from this 3-tuple path1[segment][1], # point from this 3-tuple ) bezier2 = (path2[segment - 1][1], path2[segment - 1][2], path2[segment][0], path2[segment][1], ) # Find their lengths. The math is actually fairly involved. len1 = bezierlength(bezier1) len2 = bezierlength(bezier2) # Base the number of stitches in each section on the _longest_ of # the two beziers. Otherwise, things could get too sparse when one # side is significantly longer (e.g. when going around a corner). # The risk here is that we poke a hole in the fabric if we try to # cram too many stitches on the short bezier. The user will need # to avoid this through careful construction of paths. num_zigzags = int(max(len1, len2) / zigzag_spacing_px) stitch_len1 = len1 / num_zigzags stitch_len2 = len2 / num_zigzags # Now do the stitches. Each "zigzag" has a "zig" and a "zag", that # is, go from path1 to path2 and then back to path1. # Here's what I want to be able to do. However, beziertatlength is so incredibly slow that it's unusable. #for stitch in xrange(num_zigzags): # patch.addStitch(bezierpointatt(bezier1, beziertatlength(bezier1, stitch_len1 * stitch))) # patch.addStitch(bezierpointatt(bezier2, beziertatlength(bezier2, stitch_len2 * (stitch + 0.5)))) # Instead, flatten the beziers down to a set of line segments. subpath1 = flatten([[path1[segment - 1], path1[segment]]], self.options.flat) subpath2 = flatten([[path2[segment - 1], path2[segment]]], self.options.flat) subpath1 = [PyEmb.Point(*p) for p in subpath1[0]] subpath2 = [PyEmb.Point(*p) for p in subpath2[0]] def walk(path, start_pos, start_index, distance): # Move pixels along 's line segments. # is the index of the line segment in that # we're currently on. is where along that line # segment we are. Return a new position and index. pos = start_pos index = start_index if index >= len(path) - 1: # it's possible we'll go too far due to inaccuracy in the # bezier length calculation return start_pos, start_index while True: segment_end = path[index + 1] segment_remaining = (segment_end - pos) distance_remaining = segment_remaining.length() if distance_remaining > distance: return pos + segment_remaining.unit().mul(distance), index else: index += 1 if index >= len(path) - 1: return segment_end, index distance -= distance_remaining pos = segment_end pos1 = subpath1[0] i1 = 0 pos2, i2 = walk(subpath2, subpath2[0], 0, stitch_len2 * 0.5) i2 = 0 for stitch in xrange(num_zigzags): # In each iteration, do a "zig" and a "zag". patch.addStitch(pos1) pos1, i1 = walk(subpath1, pos1, i1, stitch_len1) patch.addStitch(pos2) pos2, i2 = walk(subpath2, pos2, i2, stitch_len2) return [patch] if __name__ == '__main__': sys.setrecursionlimit(100000); e = Embroider() e.affect() #dbg.write("aaaand, I'm done. seeeya!\n") dbg.flush() dbg.close()