from collections import defaultdict from math import atan2, ceil import numpy as np from shapely.affinity import rotate, scale, translate from shapely.geometry import LineString, Point from ..elements import SatinColumn from ..utils import Point as InkstitchPoint from ..utils import prng from ..utils.geometry import line_string_to_point_list from ..utils.threading import check_stop_flag from .guided_fill import apply_stitches from .running_stitch import even_running_stitch, running_stitch def ripple_stitch(stroke): ''' Ripple stitch is allowed to cross itself and doesn't care about an equal distance of lines It is meant to be used with light (not dense) stitching It will ignore holes in a closed shape. Closed shapes will be filled with a spiral Open shapes will be stitched back and forth. If there is only one (open) line or a closed shape the target point will be used. If more sublines are present interpolation will take place between the first two. ''' if stroke.as_multi_line_string().length < 0.1: return [] is_linear, helper_lines = _get_helper_lines(stroke) num_lines = len(helper_lines[0]) skip_start = _adjust_skip(stroke, num_lines, stroke.skip_start) skip_end = _adjust_skip(stroke, num_lines, stroke.skip_end) lines = _get_ripple_lines(helper_lines, is_linear, skip_start, skip_end) stitches = _get_stitches(stroke, is_linear, lines, skip_start) if stroke.reverse: stitches.reverse() if stitches and stroke.grid_size != 0: stitches.extend(_do_grid(stroke, helper_lines, skip_start, skip_end, is_linear, stitches[-1])) if stroke.grid_first: stitches = stitches[::-1] return _repeat_coords(stitches, stroke.repeats) def _get_stitches(stroke, is_linear, lines, skip_start): if stroke.manual_pattern_placement: if stroke.flip_copies: stitches = [] for i, line in enumerate(lines): if i % 2 == 0: stitches.extend(line[::-1]) else: stitches.extend(line) return stitches return [point for line in lines for point in line] if is_linear and stroke.flip_copies: return _get_staggered_stitches(stroke, lines, skip_start) else: points = [point for line in lines for point in line] return running_stitch(points, stroke.running_stitch_length, stroke.running_stitch_tolerance, stroke.enable_random_stitch_length, stroke.random_stitch_length_jitter, stroke.random_seed) def _get_staggered_stitches(stroke, lines, skip_start): stitches = [] stitch_length = stroke.running_stitch_length tolerance = stroke.running_stitch_tolerance enable_random_stitch_length = stroke.enable_random_stitch_length length_sigma = stroke.random_stitch_length_jitter random_seed = stroke.random_seed last_point = None for i, line in enumerate(lines): connector = [] if i != 0 and stroke.join_style == 0: if i % 2 == 0 or not stroke.flip_copies: first_point = line[0] else: first_point = line[-1] connector = even_running_stitch([last_point, first_point], stitch_length, tolerance)[1:-1] if stroke.join_style == 0: should_reverse = i % 2 == 1 elif stroke.join_style == 1: should_reverse = (i + skip_start) % 2 == 1 if enable_random_stitch_length or stroke.staggers == 0: if should_reverse and stroke.flip_copies: line.reverse() points = running_stitch(line, stitch_length, tolerance, enable_random_stitch_length, length_sigma, prng.join_args(random_seed, i)) stitched_line = connector + points else: # uses the guided fill alforithm to stagger rows of stitches points = list(apply_stitches(LineString(line), stitch_length, stroke.staggers, 0.5, i, tolerance).coords) stitched_line = [InkstitchPoint(*point) for point in points] if should_reverse and stroke.flip_copies: stitched_line.reverse() stitched_line = connector + stitched_line last_point = stitched_line[-1] stitches.extend(stitched_line) return stitches def _adjust_skip(stroke, num_lines, skip): if stroke.skip_start + stroke.skip_end >= num_lines: return 0 return skip def _get_ripple_lines(helper_lines, is_linear, skip_start, skip_end): lines = [] for point_num in range(skip_start, len(helper_lines[0]) - skip_end): row = [] for line_num in range(len(helper_lines)): row.append(helper_lines[line_num][point_num]) lines.append(row) return lines def _get_satin_line_count(stroke, pairs): if not stroke.min_line_dist: num_lines = stroke.line_count else: shortest_line_len = 0 for point0, point1 in pairs: length = LineString([point0, point1]).length if shortest_line_len == 0 or length < shortest_line_len: shortest_line_len = length num_lines = ceil(shortest_line_len / stroke.min_line_dist) return _line_count_adjust(stroke, num_lines) def _get_target_line_count(stroke, target, outline): return _get_satin_line_count(stroke, zip(outline, [target]*len(outline))) def _get_guided_line_count(stroke, guide_line): if not stroke.min_line_dist: num_lines = stroke.line_count else: num_lines = ceil(guide_line.length / stroke.min_line_dist) return _line_count_adjust(stroke, num_lines) def _line_count_adjust(stroke, num_lines): if stroke.min_line_dist and stroke.line_count % 2 != num_lines % 2: # We want the line count always to be either even or odd - depending on the line count value. # So that the end point stays the same even if the design is resized. This is necessary to enable # the user to carefully plan the output and and connect the end point to the following object num_lines -= 1 # ensure minimum line count num_lines = max(1, num_lines) if stroke.is_closed or stroke.join_style == 1: # for flat join styles we need to add an other line num_lines += 1 return num_lines def _get_helper_lines(stroke): lines = stroke.as_multi_line_string().geoms if len(lines) > 1: return True, _get_satin_ripple_helper_lines(stroke) else: if stroke.manual_pattern_placement: path = stroke.parse_path() path = [stroke.strip_control_points(subpath) for subpath in path][0] outline = LineString(path) else: outline = LineString(even_running_stitch( line_string_to_point_list(lines[0]), stroke.grid_size or stroke.running_stitch_length, stroke.running_stitch_tolerance) ) if stroke.is_closed: return False, _get_circular_ripple_helper_lines(stroke, outline) elif stroke.join_style == 1: return True, _get_point_style_linear_helper_lines(stroke, outline) else: return True, _get_linear_ripple_helper_lines(stroke, outline) def _get_satin_ripple_helper_lines(stroke): # if grid_size has a number use this, otherwise use running_stitch_length length = stroke.grid_size or stroke.running_stitch_length # use satin column points for satin like build ripple stitches rail_pairs = SatinColumn(stroke.node).plot_points_on_rails(length) count = _get_satin_line_count(stroke, rail_pairs) steps = _get_steps(count, exponent=stroke.exponent, flip=stroke.flip_exponent) helper_lines = [] for point0, point1 in rail_pairs: check_stop_flag() helper_lines.append([]) helper_line = LineString((point0, point1)) for step in steps: helper_lines[-1].append(InkstitchPoint.from_shapely_point(helper_line.interpolate(step, normalized=True))) if stroke.join_style == 1 or not stroke.flip_copies: helper_lines = _converge_helper_line_points(helper_lines, True, stroke.flip_copies) return helper_lines def _converge_helper_line_points(helper_lines, point_edge=False, flip_copies=True): num_lines = len(helper_lines) steps = _get_steps(num_lines) for i, line in enumerate(helper_lines): check_stop_flag() points = [] for j in range(len(line) - 1): if point_edge and j % 2 == 1 and flip_copies: k = num_lines - 1 - i points.append(line[j] * (1 - steps[k]) + line[j + 1] * steps[k]) else: points.append(line[j] * (1 - steps[i]) + line[j + 1] * steps[i]) helper_lines[i] = points return helper_lines def _get_circular_ripple_helper_lines(stroke, outline): helper_lines = _get_linear_ripple_helper_lines(stroke, outline) # Now we want to adjust the helper lines to make a spiral. return _converge_helper_line_points(helper_lines) def _get_point_style_linear_helper_lines(stroke, outline): helper_lines = _get_linear_ripple_helper_lines(stroke, outline) return _converge_helper_line_points(helper_lines, True) def _get_linear_ripple_helper_lines(stroke, outline): guide_line = stroke.get_guide_line() max_dist = stroke.grid_size or stroke.running_stitch_length if guide_line: return _get_guided_helper_lines(stroke, outline, max_dist) else: return _target_point_helper_lines(stroke, outline) def _target_point_helper_lines(stroke, outline): helper_lines = [[] for i in range(len(outline.coords))] target = stroke.get_ripple_target() count = _get_target_line_count(stroke, target, outline.coords) steps = _get_steps(count, exponent=stroke.exponent, flip=stroke.flip_exponent) for i, point in enumerate(outline.coords): check_stop_flag() line = LineString([point, target]) for step in steps: helper_lines[i].append(InkstitchPoint.from_shapely_point(line.interpolate(step, normalized=True))) return helper_lines def _adjust_helper_lines_for_grid(grid, last_stitch): # check which end of the grid is nearest to the last stitch # and adjust grid accordingly last_stitch = Point(last_stitch) distances = [ Point(grid[0][0]).distance(last_stitch), Point(grid[0][-1]).distance(last_stitch), Point(grid[-1][0]).distance(last_stitch), Point(grid[-1][-1]).distance(last_stitch) ] nearest = distances.index(min(distances)) if nearest in [1, 3]: adjusted_grid = [] for line in grid: adjusted_grid.append(line[::-1]) grid = adjusted_grid if nearest in [2, 3]: grid.reverse() return grid def _do_grid(stroke, helper_lines, skip_start, skip_end, is_linear, last_stitch): grid = [] for i, helper in enumerate(helper_lines): end = len(helper) - skip_end points = helper[skip_start:end] if i % 2 != 0 and is_linear and not stroke.flip_copies and stroke.join_style == 0: points.reverse() grid.append(points) grid = _adjust_helper_lines_for_grid(grid, last_stitch) grid = _get_staggered_stitches(stroke, grid, 0) return grid def _get_guided_helper_lines(stroke, outline, max_distance): # for each point generate a line going along and pointing to the guide line guide_line = stroke.get_guide_line() if isinstance(guide_line, SatinColumn): # satin type guide line return generate_satin_guide_helper_lines(stroke, outline, guide_line) else: # simple guide line return _generate_guided_helper_lines(stroke, outline, max_distance, guide_line.geoms[0]) def _generate_guided_helper_lines(stroke, outline, max_distance, guide_line): # helper lines are generated by making copies of the outline along the guide line line_point_dict = defaultdict(list) if not stroke.manual_pattern_placement: outline = LineString(even_running_stitch( line_string_to_point_list(outline), max_distance, stroke.running_stitch_tolerance )) center = outline.centroid center = InkstitchPoint(center.x, center.y) if stroke.satin_guide_pattern_position == "render_at_rungs": count = len(guide_line.coords) else: count = _get_guided_line_count(stroke, guide_line) outline_steps = _get_steps(count, exponent=stroke.exponent, flip=stroke.flip_exponent) scale_steps = _get_steps(count, start=stroke.scale_start / 100.0, end=stroke.scale_end / 100.0) start_point = InkstitchPoint(*(guide_line.coords[0])) start_rotation = _get_start_rotation(guide_line) previous_guide_point = None for i in range(count): check_stop_flag() if stroke.satin_guide_pattern_position == "render_at_rungs": # Requires the guide line to be defined as manual stitch guide_point = InkstitchPoint(*guide_line.coords[i]) else: guide_point = InkstitchPoint.from_shapely_point(guide_line.interpolate(outline_steps[i], normalized=True)) translation = guide_point - start_point scaling = scale_steps[i] if stroke.rotate_ripples and previous_guide_point: rotation = atan2(guide_point.y - previous_guide_point.y, guide_point.x - previous_guide_point.x) rotation = rotation - start_rotation else: rotation = 0 transformed_outline = _transform_outline(translation, rotation, scaling, outline, Point(guide_point), stroke.scale_axis) for j, point in enumerate(transformed_outline.coords): line_point_dict[j].append(InkstitchPoint(point[0], point[1])) previous_guide_point = guide_point return _point_dict_to_helper_lines(len(outline.coords), line_point_dict) def _get_start_rotation(line): point0 = line.interpolate(0) point1 = line.interpolate(0.1) return atan2(point1.y - point0.y, point1.x - point0.x) def generate_satin_guide_helper_lines(stroke, outline, guide_line): anchor_line = stroke.get_anchor_line() if anchor_line: # position, rotation and scale defined by anchor line outline0 = InkstitchPoint(*anchor_line.coords[0]) outline1 = InkstitchPoint(*anchor_line.coords[-1]) else: # position rotation and scale defined by line end points outline_coords = outline.coords outline0 = InkstitchPoint(*outline_coords[0]) outline1 = InkstitchPoint(*outline_coords[-1]) if outline0 == outline1: return _generate_simple_satin_guide_helper_lines(stroke, outline, guide_line) outline_width = (outline1 - outline0).length() outline_rotation = atan2(outline1.y - outline0.y, outline1.x - outline0.x) if stroke.satin_guide_pattern_position == "adaptive": return _generate_satin_guide_helper_lines_with_varying_pattern_distance( stroke, guide_line, outline, outline0, outline_width, outline_rotation ) else: return _generate_satin_guide_helper_lines_with_constant_pattern_distance( stroke, guide_line, outline, outline0, outline_width, outline_rotation ) def _generate_simple_satin_guide_helper_lines(stroke, outline, guide_line): count = _get_guided_line_count(stroke, guide_line.center_line) spacing = guide_line.center_line.length / max(1, count - 1) if stroke.satin_guide_pattern_position == "render_at_rungs": sections = guide_line.flattened_sections pairs = [] for (rail0, rail1) in sections: pairs.append((rail0[-1], rail1[-1])) pairs = pairs[:-1] else: pairs = guide_line.plot_points_on_rails(spacing) point0 = pairs[0][0] point1 = pairs[0][1] start_rotation = atan2(point1.y - point0.y, point1.x - point0.x) start_scale = (point1 - point0).length() outline_center = InkstitchPoint.from_shapely_point(outline.centroid) line_point_dict = defaultdict(list) # add scaled and rotated outlines along the satin column guide line for i, (point0, point1) in enumerate(pairs): check_stop_flag() guide_center = (point0 + point1) / 2 translation = guide_center - outline_center if stroke.rotate_ripples: rotation = atan2(point1.y - point0.y, point1.x - point0.x) rotation = rotation - start_rotation else: rotation = 0 scaling = (point1 - point0).length() / start_scale transformed_outline = _transform_outline(translation, rotation, scaling, outline, Point(guide_center), stroke.scale_axis) # outline to helper line points for j, point in enumerate(transformed_outline.coords): line_point_dict[j].append(InkstitchPoint(point[0], point[1])) return _point_dict_to_helper_lines(len(outline.coords), line_point_dict) def _generate_satin_guide_helper_lines_with_constant_pattern_distance(stroke, guide_line, outline, outline0, outline_width, outline_rotation): # add scaled and rotated outlines along the satin column guide line if stroke.satin_guide_pattern_position == "render_at_rungs": sections = guide_line.flattened_sections pairs = [] for (rail0, rail1) in sections: pairs.append((rail0[-1], rail1[-1])) else: count = _get_guided_line_count(stroke, guide_line.center_line) spacing = guide_line.center_line.length / max(1, count - 1) pairs = guide_line.plot_points_on_rails(spacing) if pairs[0] == pairs[-1]: pairs = pairs[:-1] line_point_dict = defaultdict(list) for i, (point0, point1) in enumerate(pairs): check_stop_flag() # move to point0, rotate and scale so the other point hits point1 scaling = (point1 - point0).length() / outline_width rotation = atan2(point1.y - point0.y, point1.x - point0.x) rotation = rotation - outline_rotation translation = point0 - outline0 transformed_outline = _transform_outline(translation, rotation, scaling, outline, Point(point0), 0) # outline to helper line points for j, point in enumerate(transformed_outline.coords): line_point_dict[j].append(InkstitchPoint(point[0], point[1])) return _point_dict_to_helper_lines(len(outline.coords), line_point_dict) def _generate_satin_guide_helper_lines_with_varying_pattern_distance(stroke, guide_line, outline, outline0, outline_width, outline_rotation): # rotate pattern and get the pattern width transformed_outline = _transform_outline(Point([0, 0]), outline_rotation, 1, outline, Point(outline0), 0) minx, miny, maxx, maxy = transformed_outline.bounds pattern_height = maxy - miny distance = 0 min_distance = stroke.min_line_dist or 0 line_point_dict = defaultdict(list) while True: if distance > guide_line.center_line.length: break check_stop_flag() point0, point1 = get_cut_points(guide_line, distance) # move to point0, rotate and scale so the other point hits point1 scaling = (point1 - point0).length() / outline_width rotation = atan2(point1.y - point0.y, point1.x - point0.x) rotation = rotation - outline_rotation translation = point0 - outline0 transformed_outline = _transform_outline(translation, rotation, scaling, outline, Point(point0), 0) distance += max(0.01, (pattern_height * scaling) + min_distance) # outline to helper line points for j, point in enumerate(transformed_outline.coords): line_point_dict[j].append(InkstitchPoint(point[0], point[1])) return _point_dict_to_helper_lines(len(outline.coords), line_point_dict) def get_cut_points(guide_line, distance): cut_point = guide_line.center_line.interpolate(distance) return guide_line.find_cut_points(*cut_point.coords) def _transform_outline(translation, rotation, scaling, outline, origin, scale_axis): # transform transformed_outline = translate(outline, translation.x, translation.y) # rotate if rotation != 0: transformed_outline = rotate(transformed_outline, rotation, use_radians=True, origin=origin) # scale | scale_axis => 0: xy, 1: x, 2: y, 3: none scale_x = scale_y = scaling if scale_axis in [2, 3]: scale_x = 1 if scale_axis in [1, 3]: scale_y = 1 transformed_outline = scale(transformed_outline, scale_x, scale_y, origin=origin) return transformed_outline def _point_dict_to_helper_lines(line_count, point_dict): lines = [] for i in range(line_count): points = point_dict[i] lines.append(points) return lines def _get_steps(num_steps, start=0.0, end=1.0, exponent=1, flip=False): steps = np.linspace(start, end, num_steps) steps = steps ** exponent if flip: steps = 1.0 - np.flip(steps) return list(steps) def _repeat_coords(coords, repeats): if not coords: return coords final_coords = [] for i in range(repeats): if i % 2 == 1: # reverse every other pass this_coords = coords[::-1] else: this_coords = coords[:] final_coords.extend(this_coords) return final_coords