1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
|
#!/usr/bin/python
#
# documentation: see included index.html
# LICENSE:
# Copyright 2010 by Jon Howell,
# Originally licensed under <a href="http://www.gnu.org/licenses/quick-guide-gplv3.html">GPLv3</a>.
# Copyright 2015 by Bas Wijnen <wijnen@debian.org>.
# New parts are licensed under AGPL3 or later.
# (Note that this means this work is licensed under the common part of those two: AGPL version 3.)
#
# Important resources:
# lxml interface for walking SVG tree:
# http://codespeak.net/lxml/tutorial.html#elementpath
# Inkscape library for extracting paths from SVG:
# http://wiki.inkscape.org/wiki/index.php/Python_modules_for_extensions#simplepath.py
# Shapely computational geometry library:
# http://gispython.org/shapely/manual.html#multipolygons
# Embroidery file format documentation:
# http://www.achatina.de/sewing/main/TECHNICL.HTM
import sys
sys.path.append("/usr/share/inkscape/extensions")
import os
import subprocess
from copy import deepcopy
import time
from itertools import chain, izip
import inkex
import simplepath
import simplestyle
import simpletransform
from bezmisc import bezierlength, beziertatlength, bezierpointatt
from cspsubdiv import cspsubdiv
import cubicsuperpath
import PyEmb
import math
import lxml.etree as etree
import shapely.geometry as shgeo
import shapely.affinity as affinity
from pprint import pformat
dbg = open("/tmp/embroider-debug.txt", "w")
PyEmb.dbg = dbg
# a 0.5pt stroke becomes a straight line.
STROKE_MIN = 0.5
def parse_boolean(s):
if isinstance(s, bool):
return s
else:
return s and (s.lower() in ('yes', 'y', 'true', 't', '1'))
def get_param(node, param, default):
value = node.get("embroider_" + param)
if value is None or not value.strip():
return default
return value.strip()
def get_boolean_param(node, param, default=False):
value = get_param(node, param, default)
return parse_boolean(value)
def get_float_param(node, param, default=None):
value = get_param(node, param, default)
try:
return float(value)
except ValueError:
return default
def get_int_param(node, param, default=None):
value = get_param(node, param, default)
try:
return int(value)
except ValueError:
return default
def parse_path(node):
path = cubicsuperpath.parsePath(node.get("d"))
# print >> sys.stderr, pformat(path)
# start with the identity transform
transform = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]
# combine this node's transform with all parent groups' transforms
transform = simpletransform.composeParents(node, transform)
# apply the combined transform to this node's path
simpletransform.applyTransformToPath(transform, path)
return path
def flatten(path, flatness):
"""approximate a path containing beziers with a series of points"""
path = deepcopy(path)
cspsubdiv(path, flatness)
flattened = []
for comp in path:
vertices = []
for ctl in comp:
vertices.append((ctl[1][0], ctl[1][1]))
flattened.append(vertices)
return flattened
def csp_to_shapely_polygon(path):
poly_ary = []
for sub_path in path:
point_ary = []
last_pt = None
for pt in sub_path:
if (last_pt!=None):
vp = (pt[0]-last_pt[0],pt[1]-last_pt[1])
dp = math.sqrt(math.pow(vp[0],2.0)+math.pow(vp[1],2.0))
#dbg.write("dp %s\n" % dp)
if (dp > 0.01):
# I think too-close points confuse shapely.
point_ary.append(pt)
last_pt = pt
else:
last_pt = pt
poly_ary.append(point_ary)
# shapely's idea of "holes" are to subtract everything in the second set
# from the first. So let's at least make sure the "first" thing is the
# biggest path.
# TODO: actually figure out which things are holes and which are shells
poly_ary.sort(key=lambda point_list: shgeo.Polygon(point_list).area, reverse=True)
polygon = shgeo.MultiPolygon([(poly_ary[0], poly_ary[1:])])
#print >> sys.stderr, "polygon valid:", polygon.is_valid
return polygon
class Patch:
def __init__(self, color=None, stitches=None):
self.color = color
self.stitches = stitches or []
def __add__(self, other):
if isinstance(other, Patch):
return Patch(self.color, self.stitches + other.stitches)
else:
raise TypeError("Patch can only be added to another Patch")
def addStitch(self, stitch):
self.stitches.append(stitch)
def reverse(self):
return Patch(self.color, self.stitches[::-1])
def patches_to_stitches(patch_list, collapse_len_px=0):
stitches = []
lastStitch = None
lastColor = None
for patch in patch_list:
jumpStitch = True
for stitch in patch.stitches:
if lastStitch and lastColor == patch.color:
l = (stitch - lastStitch).length()
if l <= 0.1:
# filter out duplicate successive stitches
jumpStitch = False
continue
if jumpStitch:
# consider collapsing jump stitch, if it is pretty short
if l < collapse_len_px:
#dbg.write("... collapsed\n")
jumpStitch = False
#dbg.write("stitch color %s\n" % patch.color)
newStitch = PyEmb.Stitch(stitch.x, stitch.y, patch.color, jumpStitch)
stitches.append(newStitch)
jumpStitch = False
lastStitch = stitch
lastColor = patch.color
return stitches
def stitches_to_paths(stitches):
paths = []
lastColor = None
lastStitch = None
for stitch in stitches:
if stitch.jumpStitch:
if lastColor == stitch.color:
paths.append([None, []])
if lastStitch is not None:
paths[-1][1].append(['M', lastStitch.as_tuple()])
paths[-1][1].append(['L', stitch.as_tuple()])
lastColor = None
if stitch.color != lastColor:
paths.append([stitch.color, []])
paths[-1][1].append(['L' if len(paths[-1][1]) > 0 else 'M', stitch.as_tuple()])
lastColor = stitch.color
lastStitch = stitch
return paths
def emit_inkscape(parent, stitches):
for color, path in stitches_to_paths(stitches):
dbg.write('path: %s %s\n' % (color, repr(path)))
inkex.etree.SubElement(parent,
inkex.addNS('path', 'svg'),
{ 'style':simplestyle.formatStyle(
{ 'stroke': color if color is not None else '#000000',
'stroke-width':"0.4",
'fill': 'none' }),
'd':simplepath.formatPath(path),
})
class Embroider(inkex.Effect):
def __init__(self, *args, **kwargs):
#dbg.write("args: %s\n" % repr(sys.argv))
inkex.Effect.__init__(self)
self.stacking_order_counter = 0
self.OptionParser.add_option("-r", "--row_spacing_mm",
action="store", type="float",
dest="row_spacing_mm", default=0.4,
help="row spacing (mm)")
self.OptionParser.add_option("-z", "--zigzag_spacing_mm",
action="store", type="float",
dest="zigzag_spacing_mm", default=1.0,
help="zigzag spacing (mm)")
self.OptionParser.add_option("-l", "--max_stitch_len_mm",
action="store", type="float",
dest="max_stitch_len_mm", default=3.0,
help="max stitch length (mm)")
self.OptionParser.add_option("--running_stitch_len_mm",
action="store", type="float",
dest="running_stitch_len_mm", default=3.0,
help="running stitch length (mm)")
self.OptionParser.add_option("-c", "--collapse_len_mm",
action="store", type="float",
dest="collapse_len_mm", default=0.0,
help="max collapse length (mm)")
self.OptionParser.add_option("-f", "--flatness",
action="store", type="float",
dest="flat", default=0.1,
help="Minimum flatness of the subdivided curves")
self.OptionParser.add_option("-o", "--order",
action="store", type="choice",
choices=["automatic", "layer", "object"],
dest="order", default="automatic",
help="patch stitching order")
self.OptionParser.add_option("--hide_layers",
action="store", type="choice",
choices=["true","false"],
dest="hide_layers", default="true",
help="Hide all other layers when the embroidery layer is generated")
self.OptionParser.add_option("-O", "--output_format",
action="store", type="choice",
choices=["melco", "csv", "gcode"],
dest="output_format", default="melco",
help="File output format")
self.OptionParser.add_option("-P", "--path",
action="store", type="string",
dest="path", default=".",
help="Directory in which to store output file")
self.OptionParser.add_option("-b", "--max-backups",
action="store", type="int",
dest="max_backups", default=5,
help="Max number of backups of output files to keep.")
self.OptionParser.add_option("-p", "--pixels_per_mm",
action="store", type="int",
dest="pixels_per_millimeter", default=10,
help="Number of on-screen pixels per millimeter.")
self.patches = []
def process_one_path(self, node, shpath, threadcolor, angle):
#self.add_shapely_geo_to_svg(shpath.boundary, color="#c0c000")
flip = get_boolean_param(node, "flip", False)
row_spacing_px = get_float_param(node, "row_spacing", self.options.row_spacing_mm) * self.options.pixels_per_millimeter
max_stitch_len_px = get_float_param(node, "max_stitch_length", self.options.max_stitch_len_mm) * self.options.pixels_per_millimeter
num_staggers = get_int_param(node, "staggers", 4)
rows_of_segments = self.intersect_region_with_grating(shpath, row_spacing_px, angle, flip)
groups_of_segments = self.pull_runs(rows_of_segments, shpath, row_spacing_px)
# "east" is the name of the direction that is to the right along a row
east = PyEmb.Point(1, 0).rotate(-angle)
#print >> sys.stderr, len(groups_of_segments)
patches = []
for group_of_segments in groups_of_segments:
patch = Patch(color=threadcolor)
first_segment = True
swap = False
last_end = None
for segment in group_of_segments:
# We want our stitches to look like this:
#
# ---*-----------*-----------
# ------*-----------*--------
# ---------*-----------*-----
# ------------*-----------*--
# ---*-----------*-----------
#
# Each successive row of stitches will be staggered, with
# num_staggers rows before the pattern repeats. A value of
# 4 gives a nice fill while hiding the needle holes. The
# first row is offset 0%, the second 25%, the third 50%, and
# the fourth 75%.
#
# Actually, instead of just starting at an offset of 0, we
# can calculate a row's offset relative to the origin. This
# way if we have two abutting fill regions, they'll perfectly
# tile with each other. That's important because we often get
# abutting fill regions from pull_runs().
(beg, end) = segment
if (swap):
(beg,end)=(end,beg)
beg = PyEmb.Point(*beg)
end = PyEmb.Point(*end)
row_direction = (end - beg).unit()
segment_length = (end - beg).length()
# only stitch the first point if it's a reasonable distance away from the
# last stitch
if last_end is None or (beg - last_end).length() > 0.5 * self.options.pixels_per_millimeter:
patch.addStitch(beg)
# Now, imagine the coordinate axes rotated by 'angle' degrees, such that
# the rows are parallel to the X axis. We can find the coordinates in these
# axes of the beginning point in this way:
relative_beg = beg.rotate(angle)
absolute_row_num = round(relative_beg.y / row_spacing_px)
row_stagger = absolute_row_num % num_staggers
row_stagger_offset = (float(row_stagger) / num_staggers) * max_stitch_len_px
first_stitch_offset = (relative_beg.x - row_stagger_offset) % max_stitch_len_px
first_stitch = beg - east * first_stitch_offset
# we might have chosen our first stitch just outside this row, so move back in
if (first_stitch - beg) * row_direction < 0:
first_stitch += row_direction * max_stitch_len_px
offset = (first_stitch - beg).length()
while offset < segment_length:
patch.addStitch(beg + offset * row_direction)
offset += max_stitch_len_px
if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_millimeter:
patch.addStitch(end)
last_end = end
swap = not swap
patches.append(patch)
return patches
def intersect_region_with_grating(self, shpath, row_spacing_px, angle, flip=False):
# the max line length I'll need to intersect the whole shape is the diagonal
(minx, miny, maxx, maxy) = shpath.bounds
upper_left = PyEmb.Point(minx, miny)
lower_right = PyEmb.Point(maxx, maxy)
length = (upper_left - lower_right).length()
half_length = length / 2.0
# Now get a unit vector rotated to the requested angle. I use -angle
# because shapely rotates clockwise, but my geometry textbooks taught
# me to consider angles as counter-clockwise from the X axis.
direction = PyEmb.Point(1, 0).rotate(-angle)
# and get a normal vector
normal = direction.rotate(math.pi/2)
# I'll start from the center, move in the normal direction some amount,
# and then walk left and right half_length in each direction to create
# a line segment in the grating.
center = PyEmb.Point((minx + maxx) / 2.0, (miny + maxy) / 2.0)
# I need to figure out how far I need to go along the normal to get to
# the edge of the shape. To do that, I'll rotate the bounding box
# angle degrees clockwise and ask for the new bounding box. The max
# and min y tell me how far to go.
_, start, _, end = affinity.rotate(shpath, angle, origin='center', use_radians = True).bounds
# convert start and end to be relative to center (simplifies things later)
start -= center.y
end -= center.y
# offset start slightly so that rows are always an even multiple of
# row_spacing_px from the origin. This makes it so that abutting
# fill regions at the same angle and spacing always line up nicely.
start -= (start + normal * center) % row_spacing_px
rows = []
while start < end:
p0 = center + normal.mul(start) + direction.mul(half_length)
p1 = center + normal.mul(start) - direction.mul(half_length)
endpoints = [p0.as_tuple(), p1.as_tuple()]
shline = shgeo.LineString(endpoints)
res = shline.intersection(shpath)
if (isinstance(res, shgeo.MultiLineString)):
runs = map(lambda line_string: line_string.coords, res.geoms)
else:
if res.is_empty or len(res.coords) == 1:
# ignore if we intersected at a single point or no points
start += row_spacing_px
continue
runs = [res.coords]
runs.sort(key=lambda seg: (PyEmb.Point(*seg[0]) - upper_left).length())
if flip:
runs.reverse()
runs = map(lambda run: tuple(reversed(run)), runs)
rows.append(runs)
start += row_spacing_px
return rows
def pull_runs(self, rows, shpath, row_spacing_px):
# Given a list of rows, each containing a set of line segments,
# break the area up into contiguous patches of line segments.
#
# This is done by repeatedly pulling off the first line segment in
# each row and calling that a shape. We have to be careful to make
# sure that the line segments are part of the same shape. Consider
# the letter "H", with an embroidery angle of 45 degrees. When
# we get to the bottom of the lower left leg, the next row will jump
# over to midway up the lower right leg. We want to stop there and
# start a new patch.
# Segments more than this far apart are considered not to be part of
# the same run.
row_distance_cutoff = row_spacing_px * 1.1
def make_quadrilateral(segment1, segment2):
return shgeo.Polygon((segment1[0], segment1[1], segment2[1], segment2[0], segment1[0]))
def is_same_run(segment1, segment2):
if shgeo.LineString(segment1).distance(shgeo.LineString(segment1)) > row_spacing_px * 1.1:
return False
quad = make_quadrilateral(segment1, segment2)
quad_area = quad.area
try:
intersection_area = shpath.intersection(quad).area
except:
dbg.write("blowup: %s" % quad)
raise
return (intersection_area / quad_area) >= 0.9
#for row in rows:
# print >> sys.stderr, len(row)
#print >>sys.stderr, "\n".join(str(len(row)) for row in rows)
runs = []
count = 0
while (len(rows) > 0):
run = []
prev = None
for row_num in xrange(len(rows)):
row = rows[row_num]
first, rest = row[0], row[1:]
# TODO: only accept actually adjacent rows here
if prev is not None and not is_same_run(prev, first):
break
run.append(first)
prev = first
rows[row_num] = rest
#print >> sys.stderr, len(run)
runs.append(run)
rows = [row for row in rows if len(row) > 0]
count += 1
return runs
def handle_node(self, node):
if simplestyle.parseStyle(node.get("style")).get('display') == "none":
return
if node.tag == self.svgdefs:
return
for child in node:
self.handle_node(child)
if node.tag != self.svgpath:
return
#dbg.write("Node: %s\n"%str((id, etree.tostring(node, pretty_print=True))))
if get_boolean_param(node, "satin_column"):
self.patch_list.extend(self.satin_column(node))
else:
stroke = []
fill = []
if (self.get_style(node, "stroke")!=None):
stroke = self.path_to_patch_list(node)
if (self.get_style(node, "fill")!=None):
fill = self.filled_region_to_patchlist(node)
if get_boolean_param(node, "stroke_first", False):
self.patch_list.extend(stroke)
self.patch_list.extend(fill)
else:
self.patch_list.extend(fill)
self.patch_list.extend(stroke)
def get_style(self, node, style_name):
style = simplestyle.parseStyle(node.get("style"))
if (style_name not in style):
return None
value = style[style_name]
if (value==None or value=="none"):
return None
return value
def get_output_path(self):
svg_filename = self.document.getroot().get(inkex.addNS('docname', 'sodipodi'))
csv_filename = svg_filename.replace('.svg', '.csv')
output_path = os.path.join(self.options.path, csv_filename)
def add_suffix(path, suffix):
if suffix > 0:
path = "%s.%s" % (path, suffix)
return path
def move_if_exists(path, suffix=0):
source = add_suffix(path, suffix)
if suffix >= self.options.max_backups:
return
dest = add_suffix(path, suffix + 1)
if os.path.exists(source):
move_if_exists(path, suffix + 1)
os.rename(source, dest)
move_if_exists(output_path)
return output_path
def effect(self):
# Printing anything other than a valid SVG on stdout blows inkscape up.
old_stdout = sys.stdout
sys.stdout = sys.stderr
self.row_spacing_px = self.options.row_spacing_mm * self.options.pixels_per_millimeter
self.zigzag_spacing_px = self.options.zigzag_spacing_mm * self.options.pixels_per_millimeter
self.max_stitch_len_px = self.options.max_stitch_len_mm * self.options.pixels_per_millimeter
self.running_stitch_len_px = self.options.running_stitch_len_mm * self.optoins.pixels_per_millimeter
self.collapse_len_px = self.options.collapse_len_mm * self.options.pixels_per_millimeter
self.svgpath = inkex.addNS('path', 'svg')
self.svgdefs = inkex.addNS('defs', 'svg')
self.patch_list = []
dbg.write("starting nodes: %s" % time.time())
dbg.flush()
if self.selected:
# be sure to visit selected nodes in the order they're stacked in
# the document
for node in self.document.getroot().iter():
if node.get("id") in self.selected:
self.handle_node(node)
else:
self.handle_node(self.document.getroot())
dbg.write("finished nodes: %s" % time.time())
dbg.flush()
if not self.patch_list:
if self.selected:
inkex.errormsg("No embroiderable paths selected.")
else:
inkex.errormsg("No embroiderable paths found in document.")
inkex.errormsg("Tip: use Path -> Object to Path to convert non-paths before embroidering.")
return
if self.options.hide_layers:
self.hide_layers()
stitches = patches_to_stitches(self.patch_list, self.collapse_len_px)
emb = PyEmb.Embroidery(stitches, pixels_per_millimeter)
emb.export(self.get_output_path(), self.options.output_format)
new_layer = inkex.etree.SubElement(self.document.getroot(),
inkex.addNS('g', 'svg'), {})
new_layer.set('id', self.uniqueId("embroidery"))
new_layer.set(inkex.addNS('label', 'inkscape'), 'Embroidery')
new_layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer')
emit_inkscape(new_layer, stitches)
sys.stdout = old_stdout
def hide_layers(self):
for g in self.document.getroot().findall(inkex.addNS("g","svg")):
if g.get(inkex.addNS("groupmode", "inkscape")) == "layer":
g.set("style", "display:none")
def path_to_patch_list(self, node):
threadcolor = simplestyle.parseStyle(node.get("style"))["stroke"]
stroke_width_str = simplestyle.parseStyle(node.get("style"))["stroke-width"]
if (stroke_width_str.endswith("px")):
# don't really know how we should be doing unit conversions.
# but let's hope px are kind of like pts?
stroke_width_str = stroke_width_str[:-2]
stroke_width = float(stroke_width_str)
dashed = self.get_style(node, "stroke-dasharray") is not None
#dbg.write("stroke_width is <%s>\n" % repr(stroke_width))
#dbg.flush()
running_stitch_len_px = get_float_param(node, "stitch_length", self.options.running_stitch_len_mm) * self.pixels_per_millimeter
zigzag_spacing_px = get_float_param(node, "zigzag_spacing", self.options.zigzag_spacing_mm) * self.options.pixels_per_millimeter
repeats = get_int_param(node, "repeats", 1)
paths = flatten(parse_path(node), self.options.flat)
# regularize the points lists.
# (If we're parsing beziers, there will be a list of multi-point
# subarrays.)
patches = []
for path in paths:
path = [PyEmb.Point(x, y) for x, y in path]
if (stroke_width <= STROKE_MIN or dashed):
#dbg.write("self.max_stitch_len_px = %s\n" % self.max_stitch_len_px)
patch = self.stroke_points(path, running_stitch_len_px, 0.0, repeats, threadcolor)
else:
patch = self.stroke_points(path, zigzag_spacing_px*0.5, stroke_width, repeats, threadcolor)
patches.extend(patch)
return patches
def stroke_points(self, emb_point_list, zigzag_spacing_px, stroke_width, repeats, threadcolor):
patch = Patch(color=threadcolor)
p0 = emb_point_list[0]
rho = 0.0
fact = 1
last_segment_direction = None
for repeat in xrange(repeats):
if repeat % 2 == 0:
order = range(1, len(emb_point_list))
else:
order = range(-2, -len(emb_point_list) - 1, -1)
for segi in order:
p1 = emb_point_list[segi]
# how far we have to go along segment
seg_len = (p1 - p0).length()
if (seg_len == 0):
continue
# vector pointing along segment
along = (p1 - p0).unit()
# vector pointing to edge of stroke width
perp = along.rotate_left().mul(stroke_width*0.5)
if stroke_width == 0.0 and last_segment_direction is not None:
if abs(1.0 - along * last_segment_direction) > 0.5:
# if greater than 45 degree angle, stitch the corner
#print >> sys.stderr, "corner", along * last_segment_direction
rho = zigzag_spacing_px
patch.addStitch(p0)
# iteration variable: how far we are along segment
while (rho <= seg_len):
left_pt = p0+along.mul(rho)+perp.mul(fact)
patch.addStitch(left_pt)
rho += zigzag_spacing_px
fact = -fact
p0 = p1
last_segment_direction = along
rho -= seg_len
if (p0 - patch.stitches[-1]).length() > 0.1:
patch.addStitch(p0)
return [patch]
def filled_region_to_patchlist(self, node):
angle = math.radians(float(get_float_param(node,'angle',0)))
paths = flatten(parse_path(node), self.options.flat)
shapelyPolygon = csp_to_shapely_polygon(paths)
threadcolor = simplestyle.parseStyle(node.get("style"))["fill"]
return self.process_one_path(
node,
shapelyPolygon,
threadcolor,
angle)
def fatal(self, message):
print >> sys.stderr, "error:", message
sys.exit(1)
def validate_satin_column(self, node, csp):
node_id = node.get("id")
if len(csp) != 2:
self.fatal("satin column: object %s invalid: expected exactly two sub-paths, but there are %s" % (node_id, len(csp)))
if self.get_style(node, "fill")!=None:
self.fatal("satin column: object %s has a fill (but should not)" % node_id)
if len(csp[0]) != len(csp[1]):
self.fatal("satin column: object %s has two paths with an unequal number of points (%s and %s)" % (node_id, len(csp[0]), len(csp[1])))
def satin_column(self, node):
# Stitch a variable-width satin column, zig-zagging between two paths.
# The node should have exactly two paths with no fill. Each
# path should have the same number of points. The two paths will be
# split into segments, and each segment will have a number of zigzags
# defined by the length of the longer of the two segments, divided
# by the zigzag spacing parameter.
id = node.get("id")
# First, verify that we have a valid node.
csp = parse_path(node)
self.validate_satin_column(node, csp)
# fetch parameters
zigzag_spacing_px = get_float_param(node, "zigzag_spacing", self.zigzag_spacing_mm) * self.options.pixels_per_millimeter
pull_compensation_px = get_float_param(node, "pull_compensation", 0) * self.options.pixels_per_millimeter
underlay_inset = get_float_param(node, "satin_underlay_inset", 0) * self.options.pixels_per_millimeter
underlay_stitch_len_px = get_float_param(node, "stitch_length", self.running_stitch_len_mm) * self.options.pixels_per_millimeter
underlay = get_boolean_param(node, "satin_underlay", False)
center_walk = get_boolean_param(node, "satin_center_walk", False)
zigzag_underlay_spacing = get_float_param(node, "satin_zigzag_underlay_spacing", 0) * self.options.pixels_per_millimeter
zigzag_underlay_inset = underlay_inset / 2.0
# A path is a collection of tuples, each of the form:
#
# (control_before, point, control_after)
#
# A bezier curve segment is defined by an endpoint, a control point,
# a second control point, and a final endpoint. A path is a bunch of
# bezier curves strung together. One could represent a path as a set
# of four-tuples, but there would be redundancy because the ending
# point of one bezier is the starting point of the next. Instead, a
# path is a set of 3-tuples as shown above, and one must construct
# each bezier curve by taking the appropriate endpoints and control
# points. Bleh. It should be noted that a straight segment is
# represented by having the control point on each end equal to that
# end's point.
#
# A "superpath" is a collection of paths that are all in one object.
# The "cubic" bit in "cubic superpath" is because the bezier curves
# inkscape uses involve cubic polynomials.
#
# In a path, each element in the 3-tuple is itself a tuple of (x, y).
# Tuples all the way down. Hasn't anyone heard of using classes?
path1 = csp[0]
path2 = csp[1]
threadcolor = simplestyle.parseStyle(node.get("style"))["stroke"]
patch = Patch(color=threadcolor)
def offset_points(pos1, pos2, offset_px):
# Expand or contract points. This is useful for pull
# compensation and insetting underlay.
distance = (pos1 - pos2).length()
if (pos1 - pos2).length() < 0.0001:
# if they're the same, we don't know which direction
# to offset in, so we have to just return the points
return pos1, pos2
# if offset is negative, don't contract so far that pos1
# and pos2 switch places
if offset_px < -distance/2.0:
offset_px = -distance/2.0
midpoint = (pos2 + pos1) * 0.5
pos1 = pos1 + (pos1 - midpoint).unit() * offset_px
pos2 = pos2 + (pos2 - midpoint).unit() * offset_px
return pos1, pos2
def walk_paths(spacing, offset):
# Take a bezier segment from each path in turn, and plot out an
# equal number of points on each side. Later code can alternate
# between these points to create satin stitch, underlay, etc.
side1 = []
side2 = []
def add_pair(pos1, pos2):
# Stitches in satin tend to pull toward each other. We can compensate
# by spreading the points out.
pos1, pos2 = offset_points(pos1, pos2, offset)
side1.append(pos1)
side2.append(pos2)
remainder_path1 = []
remainder_path2 = []
for segment in xrange(1, len(path1)):
# construct the current bezier segments
bezier1 = (path1[segment - 1][1], # point from previous 3-tuple
path1[segment - 1][2], # "after" control point from previous 3-tuple
path1[segment][0], # "before" control point from this 3-tuple
path1[segment][1], # point from this 3-tuple
)
bezier2 = (path2[segment - 1][1],
path2[segment - 1][2],
path2[segment][0],
path2[segment][1],
)
# Here's what I want to be able to do. However, beziertatlength is so incredibly slow that it's unusable.
#for stitch in xrange(num_zigzags):
# patch.addStitch(bezierpointatt(bezier1, beziertatlength(bezier1, stitch_len1 * stitch)))
# patch.addStitch(bezierpointatt(bezier2, beziertatlength(bezier2, stitch_len2 * (stitch + 0.5))))
# Instead, flatten the beziers down to a set of line segments.
subpath1 = remainder_path1 + flatten([[path1[segment - 1], path1[segment]]], self.options.flat)[0]
subpath2 = remainder_path2 + flatten([[path2[segment - 1], path2[segment]]], self.options.flat)[0]
len1 = shgeo.LineString(subpath1).length
len2 = shgeo.LineString(subpath2).length
subpath1 = [PyEmb.Point(*p) for p in subpath1]
subpath2 = [PyEmb.Point(*p) for p in subpath2]
# Base the number of stitches in each section on the _longest_ of
# the two beziers. Otherwise, things could get too sparse when one
# side is significantly longer (e.g. when going around a corner).
# The risk here is that we poke a hole in the fabric if we try to
# cram too many stitches on the short bezier. The user will need
# to avoid this through careful construction of paths.
num_points = max(len1, len2) / spacing
spacing1 = len1 / num_points
spacing2 = len2 / num_points
def walk(path, start_pos, start_index, distance):
# Move <distance> pixels along <path>'s line segments.
# <start_index> is the index of the line segment in <path> that
# we're currently on. <start_pos> is where along that line
# segment we are. Return a new position and index.
pos = start_pos
index = start_index
if index >= len(path) - 1:
# it's possible we'll go too far due to inaccuracy in the
# bezier length calculation
return start_pos, start_index
while True:
segment_end = path[index + 1]
segment_remaining = (segment_end - pos)
distance_remaining = segment_remaining.length()
if distance_remaining > distance:
return pos + segment_remaining.unit().mul(distance), index
else:
index += 1
if index >= len(path) - 1:
return segment_end, index
distance -= distance_remaining
pos = segment_end
pos1 = subpath1[0]
i1 = 0
pos2 = subpath2[0]
i2 = 0
# if num_zigzags >= 1.0:
# for stitch in xrange(int(num_zigzags) + 1):
for i in xrange(int(num_points)):
add_pair(pos1, pos2)
pos2, i2 = walk(subpath2, pos2, i2, spacing2)
pos1, i1 = walk(subpath1, pos1, i1, spacing1)
if i1 < len(subpath1) - 1:
remainder_path1 = [pos1] + subpath1[i1 + 1:]
else:
remainder_path1 = []
if i2 < len(subpath2) - 1:
remainder_path2 = [pos2] + subpath2[i2 + 1:]
else:
remainder_path2 = []
remainder_path1 = [p.as_tuple() for p in remainder_path1]
remainder_path2 = [p.as_tuple() for p in remainder_path2]
# We're off by one in the algorithm above, so we need one more
# pair of points. We also want to add points at the very end to
# make sure we match the vectors on screen as best as possible.
# Try to avoid doing both if they're going to stack up too
# closely.
end1 = PyEmb.Point(*remainder_path1[-1])
end2 = PyEmb.Point(*remainder_path2[-1])
if (end1 - pos1).length() > 0.3 * spacing:
add_pair(pos1, pos2)
add_pair(end1, end2)
return [side1, side2]
def calculate_underlay(inset):
# "contour walk" underlay: do stitches up one side and down the
# other.
forward, back = walk_paths(underlay_stitch_len_px, -inset)
return Patch(color=threadcolor, stitches=(forward + list(reversed(back))))
def calculate_zigzag_underlay(zigzag_spacing, inset):
# zigzag underlay, usually done at a much lower density than the
# satin itself. It looks like this:
#
# \/\/\/\/\/\/\/\/\/\/|
# /\/\/\/\/\/\/\/\/\/\|
#
# In combination with the "contour walk" underlay, this is the
# "German underlay" described here:
# http://www.mrxstitch.com/underlay-what-lies-beneath-machine-embroidery/
patch = Patch(color=threadcolor)
sides = walk_paths(zigzag_spacing/2.0, -inset)
sides = [sides[0][::2] + list(reversed(sides[0][1::2])), sides[1][1::2] + list(reversed(sides[1][::2]))]
# this fancy bit of iterable magic just repeatedly takes a point
# from each list in turn
for point in chain.from_iterable(izip(*sides)):
patch.addStitch(point)
return patch
def calculate_satin(zigzag_spacing, pull_compensation):
# satin: do a zigzag pattern, alternating between the paths. The
# zigzag looks like this:
#
# /|/|/|/|/|/|/|/|
patch = Patch(color=threadcolor)
sides = walk_paths(zigzag_spacing, pull_compensation)
for point in chain.from_iterable(izip(*sides)):
patch.addStitch(point)
return patch
if center_walk:
# Center walk is a running stitch exactly between the paths, down
# and back. It comes first.
# Bit of a hack: do it just like contour walk underlay but inset it
# really far. The inset will be clamped to the center between the
# paths.
patch += calculate_underlay(10000)
if underlay:
# Now do the contour walk underlay.
patch += calculate_underlay(underlay_inset)
if zigzag_underlay_spacing:
# zigzag underlay comes after contour walk underlay, so that the
# zigzags sit on the contour walk underlay like rail ties on rails.
patch += calculate_zigzag_underlay(zigzag_underlay_spacing, zigzag_underlay_inset)
# Finally, add the satin itself.
patch += calculate_satin(zigzag_spacing_px, pull_compensation_px)
return [patch]
if __name__ == '__main__':
sys.setrecursionlimit(100000);
e = Embroider()
e.affect()
dbg.flush()
dbg.close()
|