summaryrefslogtreecommitdiff
path: root/embroider.py
blob: aba43833172d7be9ad403d3b5159d37be289b9f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
#!/usr/bin/python
#
# documentation: see included index.html
# LICENSE:
# Copyright 2010 by Jon Howell,
# Originally licensed under <a href="http://www.gnu.org/licenses/quick-guide-gplv3.html">GPLv3</a>.
# Copyright 2015 by Bas Wijnen <wijnen@debian.org>.
# New parts are licensed under AGPL3 or later.
# (Note that this means this work is licensed under the common part of those two: AGPL version 3.)
#
# Important resources:
# lxml interface for walking SVG tree:
# http://codespeak.net/lxml/tutorial.html#elementpath
# Inkscape library for extracting paths from SVG:
# http://wiki.inkscape.org/wiki/index.php/Python_modules_for_extensions#simplepath.py
# Shapely computational geometry library:
# http://gispython.org/shapely/manual.html#multipolygons
# Embroidery file format documentation:
# http://www.achatina.de/sewing/main/TECHNICL.HTM

import sys
sys.path.append("/usr/share/inkscape/extensions")
import os
import subprocess
from copy import deepcopy
import time
from itertools import chain, izip
import inkex
import simplepath
import simplestyle
import simpletransform
from bezmisc import bezierlength, beziertatlength, bezierpointatt
from cspsubdiv import cspsubdiv
import cubicsuperpath
import math
import lxml.etree as etree
import shapely.geometry as shgeo
import shapely.affinity as affinity
import shapely.ops
from pprint import pformat

import PyEmb
from PyEmb import cache

dbg = open("/tmp/embroider-debug.txt", "w")
PyEmb.dbg = dbg

SVG_PATH_TAG = inkex.addNS('path', 'svg')
SVG_DEFS_TAG = inkex.addNS('defs', 'svg')
SVG_GROUP_TAG = inkex.addNS('g', 'svg')


class EmbroideryElement(object):

    def __init__(self, node, options):
        self.node = node
        self.options = options

    @cache
    def get_param(self, param, default):
        value = self.node.get("embroider_" + param, "").strip()

        if not value:
            value = getattr(self.options, param, default)

        return value

    @cache
    def get_boolean_param(self, param, default=None):
        value = self.get_param(param, default)

        if isinstance(value, bool):
            return value
        else:
            return value and (value.lower() in ('yes', 'y', 'true', 't', '1'))

    @cache
    def get_float_param(self, param, default=None):
        try:
            value = float(self.get_param(param, default))
        except (TypeError, ValueError):
            return default

        if param.endswith('_mm'):
            # print >> dbg, "get_float_param", param, value, "*", self.options.pixels_per_mm
            value = value * self.options.pixels_per_mm

        return value

    @cache
    def get_int_param(self, param, default=None):
        try:
            value = int(self.get_param(param, default))
        except (TypeError, ValueError):
            return default

        if param.endswith('_mm'):
            value = int(value * self.options.pixels_per_mm)

        return value

    @cache
    def get_style(self, style_name):
        style = simplestyle.parseStyle(self.node.get("style"))
        if (style_name not in style):
            return None
        value = style[style_name]
        if value == 'none':
            return None
        return value

    @cache
    def has_style(self, style_name):
        style = simplestyle.parseStyle(self.node.get("style"))
        return style_name in style

    @cache
    def parse_path(self):
        # A CSP is a  "cubic superpath".
        #
        # A "path" is a sequence of strung-together bezier curves.
        #
        # A "superpath" is a collection of paths that are all in one object.
        #
        # The "cubic" bit in "cubic superpath" is because the bezier curves
        # inkscape uses involve cubic polynomials.
        #
        # Each path is a collection of tuples, each of the form:
        #
        # (control_before, point, control_after)
        #
        # A bezier curve segment is defined by an endpoint, a control point,
        # a second control point, and a final endpoint.  A path is a bunch of
        # bezier curves strung together.  One could represent a path as a set
        # of four-tuples, but there would be redundancy because the ending
        # point of one bezier is the starting point of the next.  Instead, a
        # path is a set of 3-tuples as shown above, and one must construct
        # each bezier curve by taking the appropriate endpoints and control
        # points.  Bleh. It should be noted that a straight segment is
        # represented by having the control point on each end equal to that
        # end's point.
        #
        # In a path, each element in the 3-tuple is itself a tuple of (x, y).
        # Tuples all the way down.  Hasn't anyone heard of using classes?

        path = cubicsuperpath.parsePath(self.node.get("d"))

        # print >> sys.stderr, pformat(path)

        # start with the identity transform
        transform = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]

        # combine this node's transform with all parent groups' transforms
        transform = simpletransform.composeParents(self.node, transform)

        # apply the combined transform to this node's path
        simpletransform.applyTransformToPath(transform, path)

        return path

    def flatten(self, path):
        """approximate a path containing beziers with a series of points"""

        path = deepcopy(path)

        cspsubdiv(path, self.options.flat)

        flattened = []

        for comp in path:
            vertices = []
            for ctl in comp:
                vertices.append((ctl[1][0], ctl[1][1]))
            flattened.append(vertices)

        return flattened

    def to_patches(self, last_patch):
        raise NotImplementedError("%s must implement to_path()" % self.__class__.__name__)

    def fatal(self, message):
        print >> sys.stderr, "error:", message
        sys.exit(1)


class Fill(EmbroideryElement):

    def __init__(self, *args, **kwargs):
        super(Fill, self).__init__(*args, **kwargs)

    @property
    @cache
    def angle(self):
        return math.radians(self.get_float_param('angle', 0))

    @property
    def color(self):
        return self.get_style("fill")

    @property
    def flip(self):
        return self.get_boolean_param("flip", False)

    @property
    def row_spacing(self):
        return self.get_float_param("row_spacing_mm")

    @property
    def max_stitch_length(self):
        return self.get_float_param("max_stitch_length_mm")

    @property
    def staggers(self):
        return self.get_int_param("staggers", 4)

    @property
    @cache
    def paths(self):
        return self.flatten(self.parse_path())

    @property
    @cache
    def shape(self):
        poly_ary = []
        for sub_path in self.paths:
            point_ary = []
            last_pt = None
            for pt in sub_path:
                if (last_pt is not None):
                    vp = (pt[0] - last_pt[0], pt[1] - last_pt[1])
                    dp = math.sqrt(math.pow(vp[0], 2.0) + math.pow(vp[1], 2.0))
                    # dbg.write("dp %s\n" % dp)
                    if (dp > 0.01):
                        # I think too-close points confuse shapely.
                        point_ary.append(pt)
                        last_pt = pt
                else:
                    last_pt = pt
            poly_ary.append(point_ary)

        # shapely's idea of "holes" are to subtract everything in the second set
        # from the first. So let's at least make sure the "first" thing is the
        # biggest path.
        # TODO: actually figure out which things are holes and which are shells
        poly_ary.sort(key=lambda point_list: shgeo.Polygon(point_list).area, reverse=True)

        polygon = shgeo.MultiPolygon([(poly_ary[0], poly_ary[1:])])
        # print >> sys.stderr, "polygon valid:", polygon.is_valid
        return polygon

    @cache
    def east(self, angle):
        # "east" is the name of the direction that is to the right along a row
        return PyEmb.Point(1, 0).rotate(-angle)

    @cache
    def north(self, angle):
        return self.east(angle).rotate(math.pi / 2)

    def adjust_stagger(self, stitch, angle, row_spacing, max_stitch_length):
        row_num = round((stitch * self.north(angle)) / row_spacing)
        row_stagger = row_num % self.staggers
        stagger_offset = (float(row_stagger) / self.staggers) * max_stitch_length
        offset = ((stitch * self.east(angle)) - stagger_offset) % max_stitch_length

        return stitch - offset * self.east(angle)

    def intersect_region_with_grating(self, angle=None, row_spacing=None):
        if angle is None:
            angle = self.angle

        if row_spacing is None:
            row_spacing = self.row_spacing

        # the max line length I'll need to intersect the whole shape is the diagonal
        (minx, miny, maxx, maxy) = self.shape.bounds
        upper_left = PyEmb.Point(minx, miny)
        lower_right = PyEmb.Point(maxx, maxy)
        length = (upper_left - lower_right).length()
        half_length = length / 2.0

        # Now get a unit vector rotated to the requested angle.  I use -angle
        # because shapely rotates clockwise, but my geometry textbooks taught
        # me to consider angles as counter-clockwise from the X axis.
        direction = PyEmb.Point(1, 0).rotate(-angle)

        # and get a normal vector
        normal = direction.rotate(math.pi / 2)

        # I'll start from the center, move in the normal direction some amount,
        # and then walk left and right half_length in each direction to create
        # a line segment in the grating.
        center = PyEmb.Point((minx + maxx) / 2.0, (miny + maxy) / 2.0)

        # I need to figure out how far I need to go along the normal to get to
        # the edge of the shape.  To do that, I'll rotate the bounding box
        # angle degrees clockwise and ask for the new bounding box.  The max
        # and min y tell me how far to go.

        _, start, _, end = affinity.rotate(self.shape, angle, origin='center', use_radians=True).bounds

        # convert start and end to be relative to center (simplifies things later)
        start -= center.y
        end -= center.y

        # offset start slightly so that rows are always an even multiple of
        # row_spacing_px from the origin.  This makes it so that abutting
        # fill regions at the same angle and spacing always line up nicely.
        start -= (start + normal * center) % row_spacing

        rows = []

        while start < end:
            p0 = center + normal * start + direction * half_length
            p1 = center + normal * start - direction * half_length
            endpoints = [p0.as_tuple(), p1.as_tuple()]
            grating_line = shgeo.LineString(endpoints)

            res = grating_line.intersection(self.shape)

            if (isinstance(res, shgeo.MultiLineString)):
                runs = map(lambda line_string: line_string.coords, res.geoms)
            else:
                if res.is_empty or len(res.coords) == 1:
                    # ignore if we intersected at a single point or no points
                    start += row_spacing
                    continue
                runs = [res.coords]

            runs.sort(key=lambda seg: (PyEmb.Point(*seg[0]) - upper_left).length())

            if self.flip:
                runs.reverse()
                runs = map(lambda run: tuple(reversed(run)), runs)

            rows.append(runs)

            start += row_spacing

        return rows

    def make_quadrilateral(self, segment1, segment2):
        return shgeo.Polygon((segment1[0], segment1[1], segment2[1], segment2[0], segment1[0]))

    def is_same_run(self, segment1, segment2):
        if shgeo.LineString(segment1).distance(shgeo.LineString(segment1)) > self.row_spacing * 1.1:
            return False

        quad = self.make_quadrilateral(segment1, segment2)
        quad_area = quad.area
        intersection_area = self.shape.intersection(quad).area

        return (intersection_area / quad_area) >= 0.9

    def pull_runs(self, rows):
        # Given a list of rows, each containing a set of line segments,
        # break the area up into contiguous patches of line segments.
        #
        # This is done by repeatedly pulling off the first line segment in
        # each row and calling that a shape.  We have to be careful to make
        # sure that the line segments are part of the same shape.  Consider
        # the letter "H", with an embroidery angle of 45 degrees.  When
        # we get to the bottom of the lower left leg, the next row will jump
        # over to midway up the lower right leg.  We want to stop there and
        # start a new patch.

        # for row in rows:
        #    print >> sys.stderr, len(row)

        # print >>sys.stderr, "\n".join(str(len(row)) for row in rows)

        runs = []
        count = 0
        while (len(rows) > 0):
            run = []
            prev = None

            for row_num in xrange(len(rows)):
                row = rows[row_num]
                first, rest = row[0], row[1:]

                # TODO: only accept actually adjacent rows here
                if prev is not None and not self.is_same_run(prev, first):
                    break

                run.append(first)
                prev = first

                rows[row_num] = rest

            # print >> sys.stderr, len(run)
            runs.append(run)
            rows = [row for row in rows if len(row) > 0]

            count += 1

        return runs

    def section_to_patch(self, group_of_segments, angle=None, row_spacing=None, max_stitch_length=None):
        if max_stitch_length is None:
            max_stitch_length = self.max_stitch_length

        if row_spacing is None:
            row_spacing = self.row_spacing

        if angle is None:
            angle = self.angle

        # print >> sys.stderr, len(groups_of_segments)

        patch = Patch(color=self.color)
        first_segment = True
        swap = False
        last_end = None

        for segment in group_of_segments:
            # We want our stitches to look like this:
            #
            # ---*-----------*-----------
            # ------*-----------*--------
            # ---------*-----------*-----
            # ------------*-----------*--
            # ---*-----------*-----------
            #
            # Each successive row of stitches will be staggered, with
            # num_staggers rows before the pattern repeats.  A value of
            # 4 gives a nice fill while hiding the needle holes.  The
            # first row is offset 0%, the second 25%, the third 50%, and
            # the fourth 75%.
            #
            # Actually, instead of just starting at an offset of 0, we
            # can calculate a row's offset relative to the origin.  This
            # way if we have two abutting fill regions, they'll perfectly
            # tile with each other.  That's important because we often get
            # abutting fill regions from pull_runs().

            (beg, end) = segment

            if (swap):
                (beg, end) = (end, beg)

            beg = PyEmb.Point(*beg)
            end = PyEmb.Point(*end)

            row_direction = (end - beg).unit()
            segment_length = (end - beg).length()

            # only stitch the first point if it's a reasonable distance away from the
            # last stitch
            if last_end is None or (beg - last_end).length() > 0.5 * self.options.pixels_per_mm:
                patch.add_stitch(beg)

            first_stitch = self.adjust_stagger(beg, angle, row_spacing, max_stitch_length)

            # we might have chosen our first stitch just outside this row, so move back in
            if (first_stitch - beg) * row_direction < 0:
                first_stitch += row_direction * max_stitch_length

            offset = (first_stitch - beg).length()

            while offset < segment_length:
                patch.add_stitch(beg + offset * row_direction)
                offset += max_stitch_length

            if (end - patch.stitches[-1]).length() > 0.1 * self.options.pixels_per_mm:
                patch.add_stitch(end)

            last_end = end
            swap = not swap

        return patch

    def to_patches(self, last_patch):
        rows_of_segments = self.intersect_region_with_grating()
        groups_of_segments = self.pull_runs(rows_of_segments)

        return [self.section_to_patch(group) for group in groups_of_segments]


class AutoFill(Fill):
    @property
    @cache
    def outline(self):
        return self.shape.boundary[0]

    @property
    @cache
    def outline_length(self):
        return self.outline.length

    @property
    def flip(self):
        return False

    @property
    def running_stitch_length(self):
        return self.get_float_param("running_stitch_length_mm")

    @property
    def fill_underlay(self):
        return self.get_boolean_param("fill_underlay")

    @property
    @cache
    def fill_underlay_angle(self):
        underlay_angle = self.get_float_param("fill_underlay_angle")

        if underlay_angle:
            return math.radians(angle)
        else:
            return self.angle + math.pi / 2.0

    @property
    @cache
    def fill_underlay_row_spacing(self):
        return self.get_float_param("fill_underlay_row_spacing_mm") or self.row_spacing * 3

    @property
    @cache
    def fill_underlay_max_stitch_length(self):
        return self.get_float_param("fill_underlay_max_stitch_length_mm" or self.max_stitch_length)

    def validate(self):
        if len(self.shape.boundary) > 1:
            self.fatal("auto-fill: object %s cannot be auto-filled because it has one or more holes.  Please disable auto-fill for this object or break it into separate objects without holes." % self.node.get('id'))

    def is_same_run(self, segment1, segment2):
        if shgeo.Point(segment1[0]).distance(shgeo.Point(segment2[0])) > self.max_stitch_length:
            return False

        if shgeo.Point(segment1[1]).distance(shgeo.Point(segment2[1])) > self.max_stitch_length:
            return False

        return True

    def perimeter_distance(self, p1, p2):
        # how far around the perimeter (and in what direction) do I need to go
        # to get from p1 to p2?

        p1_projection = self.outline.project(shgeo.Point(p1))
        p2_projection = self.outline.project(shgeo.Point(p2))

        distance = p2_projection - p1_projection

        if abs(distance) > self.outline_length / 2.0:
            # if we'd have to go more than halfway around, it's faster to go
            # the other way
            if distance < 0:
                return distance + self.outline_length
            elif distance > 0:
                return distance - self.outline_length
            else:
                # this ought not happen, but just for completeness, return 0 if
                # p1 and p0 are the same point
                return 0
        else:
            return distance

    def connect_points(self, p1, p2):
        patch = Patch(color=self.color)

        pos = self.outline.project(shgeo.Point(p1))
        distance = self.perimeter_distance(p1, p2)
        stitches = abs(int(distance / self.running_stitch_length))

        direction = math.copysign(1.0, distance)
        one_stitch = self.running_stitch_length * direction

        for i in xrange(stitches):
            pos = (pos + one_stitch) % self.outline_length

            stitch = PyEmb.Point(*self.outline.interpolate(pos).coords[0])

            # if we're moving along the fill direction, adjust the stitch to
            # match the fill so it blends in
            if patch.stitches:
                if abs((stitch - patch.stitches[-1]) * self.north(self.angle)) < 0.01:
                    new_stitch = self.adjust_stagger(stitch, self.angle, self.row_spacing, self.max_stitch_length)

                    # don't push the point past the end of this section of the outline
                    if self.outline.distance(shgeo.Point(new_stitch)) <= 0.01:
                        stitch = new_stitch

            patch.add_stitch(stitch)

        return patch

    def get_corner_points(self, section):
        return section[0][0], section[0][-1], section[-1][0], section[-1][-1]

    def nearest_corner(self, section, point):
        return min(self.get_corner_points(section),
                   key=lambda corner: abs(self.perimeter_distance(point, corner)))

    def find_nearest_section(self, sections, point):
        sections_with_nearest_corner = [(i, self.nearest_corner(section, point))
                                        for i, section in enumerate(sections)]
        return min(sections_with_nearest_corner,
                   key=lambda(section, corner): abs(self.perimeter_distance(point, corner)))

    def section_from_corner(self, section, start_corner, angle, row_spacing, max_stitch_length):
        if start_corner not in section[0]:
            section = list(reversed(section))

        if section[0][0] != start_corner:
            section = [list(reversed(row)) for row in section]

        return self.section_to_patch(section, angle, row_spacing, max_stitch_length)

    def auto_fill(self, angle, row_spacing, max_stitch_length, starting_point=None):
        rows_of_segments = self.intersect_region_with_grating(angle, row_spacing)
        sections = self.pull_runs(rows_of_segments)

        patches = []
        last_stitch = starting_point
        while sections:
            if last_stitch:
                section_index, start_corner = self.find_nearest_section(sections, last_stitch)
                patches.append(self.connect_points(last_stitch, start_corner))
                patches.append(self.section_from_corner(sections.pop(section_index), start_corner, angle, row_spacing, max_stitch_length))
            else:
                patches.append(self.section_to_patch(sections.pop(0), angle, row_spacing, max_stitch_length))

            last_stitch = patches[-1].stitches[-1]

        return patches

    def to_patches(self, last_patch):
        print >> dbg, "autofill"
        self.validate()

        patches = []

        if last_patch is None:
            last_stitch = None
        else:
            last_stitch = last_patch.stitches[-1]

        if self.fill_underlay:
            patches.extend(self.auto_fill(self.fill_underlay_angle, self.fill_underlay_row_spacing, self.fill_underlay_max_stitch_length, last_stitch))
            last_stitch = patches[-1].stitches[-1]

        patches.extend(self.auto_fill(self.angle, self.row_spacing, self.max_stitch_length, last_stitch))

        return patches


class Stroke(EmbroideryElement):

    @property
    def color(self):
        return self.get_style("stroke")

    @property
    @cache
    def width(self):
        stroke_width = self.get_style("stroke-width")

        if stroke_width.endswith("px"):
            stroke_width = stroke_width[:-2]

        return float(stroke_width)

    @property
    def dashed(self):
        return self.get_style("stroke-dasharray") is not None

    @property
    def running_stitch_length(self):
        return self.get_float_param("running_stitch_length_mm")

    @property
    @cache
    def zigzag_spacing(self):
        return self.get_float_param("zigzag_spacing_mm")

    @property
    def repeats(self):
        return self.get_int_param("repeats", 1)

    @property
    def paths(self):
        return self.flatten(self.parse_path())

    def is_running_stitch(self):
        # stroke width <= 0.5 pixels is deprecated in favor of dashed lines
        return self.dashed or self.width <= 0.5

    def stroke_points(self, emb_point_list, zigzag_spacing, stroke_width):
        patch = Patch(color=self.color)
        p0 = emb_point_list[0]
        rho = 0.0
        side = 1
        last_segment_direction = None

        for repeat in xrange(self.repeats):
            if repeat % 2 == 0:
                order = range(1, len(emb_point_list))
            else:
                order = range(-2, -len(emb_point_list) - 1, -1)

            for segi in order:
                p1 = emb_point_list[segi]

                # how far we have to go along segment
                seg_len = (p1 - p0).length()
                if (seg_len == 0):
                    continue

                # vector pointing along segment
                along = (p1 - p0).unit()

                # vector pointing to edge of stroke width
                perp = along.rotate_left() * (stroke_width * 0.5)

                if stroke_width == 0.0 and last_segment_direction is not None:
                    if abs(1.0 - along * last_segment_direction) > 0.5:
                        # if greater than 45 degree angle, stitch the corner
                        rho = self.zigzag_spacing
                        patch.add_stitch(p0)

                # iteration variable: how far we are along segment
                while (rho <= seg_len):
                    left_pt = p0 + along * rho + perp * side
                    patch.add_stitch(left_pt)
                    rho += self.zigzag_spacing
                    side = -side

                p0 = p1
                last_segment_direction = along
                rho -= seg_len

            if (p0 - patch.stitches[-1]).length() > 0.1:
                patch.add_stitch(p0)

        return patch

    def to_patches(self, last_patch):
        patches = []

        for path in self.paths:
            path = [PyEmb.Point(x, y) for x, y in path]
            if self.is_running_stitch():
                patch = self.stroke_points(path, self.running_stitch_length, stroke_width=0.0)
            else:
                patch = self.stroke_points(path, self.zigzag_spacing / 2.0, stroke_width=self.width)

            patches.append(patch)

        return patches


class SatinColumn(EmbroideryElement):

    def __init__(self, *args, **kwargs):
        super(SatinColumn, self).__init__(*args, **kwargs)

        self.csp = self.parse_path()
        self.flattened_beziers = self.get_flattened_paths()

        # print >> dbg, "flattened beziers", self.flattened_beziers

    @property
    def color(self):
        return self.get_style("stroke")

    @property
    def zigzag_spacing(self):
        # peak-to-peak distance between zigzags
        return self.get_float_param("zigzag_spacing_mm")

    @property
    def pull_compensation(self):
        # In satin stitch, the stitches have a tendency to pull together and
        # narrow the entire column.  We can compensate for this by stitching
        # wider than we desire the column to end up.
        return self.get_float_param("pull_compensation_mm", 0)

    @property
    def contour_underlay(self):
        # "Contour underlay" is stitching just inside the rectangular shape
        # of the satin column; that is, up one side and down the other.
        return self.get_boolean_param("contour_underlay")

    @property
    def contour_underlay_stitch_length(self):
        # use "contour_underlay_stitch_length", or, if not set, default to "stitch_length"
        return self.get_float_param("contour_underlay_stitch_length_mm") or self.get_float_param("running_stitch_length_mm")

    @property
    def contour_underlay_inset(self):
        # how far inside the edge of the column to stitch the underlay
        return self.get_float_param("contour_underlay_inset_mm", 0.4)

    @property
    def center_walk_underlay(self):
        # "Center walk underlay" is stitching down and back in the centerline
        # between the two sides of the satin column.
        return self.get_boolean_param("center_walk_underlay")

    @property
    def center_walk_underlay_stitch_length(self):
        # use "center_walk_underlay_stitch_length", or, if not set, default to "stitch_length"
        return self.get_float_param("center_walk_underlay_stitch_length_mm") or self.get_float_param("running_stitch_length_mm")

    @property
    def zigzag_underlay(self):
        return self.get_boolean_param("zigzag_underlay")

    @property
    def zigzag_underlay_spacing(self):
        # peak-to-peak distance between zigzags in zigzag underlay
        return self.get_float_param("zigzag_underlay_spacing_mm", 1)

    @property
    def zigzag_underlay_inset(self):
        # how far in from the edge of the satin the points in the zigzags
        # should be

        # Default to half of the contour underlay inset.  That is, if we're
        # doing both contour underlay and zigzag underlay, make sure the
        # points of the zigzag fall outside the contour underlay but inside
        # the edges of the satin column.
        return self.get_float_param("zigzag_underlay_inset_mm") or self.contour_underlay_inset / 2.0

    def get_flattened_paths(self):
        # Given a pair of paths made up of bezier segments, flatten
        # each individual bezier segment into line segments that approximate
        # the curves.  Retain the divisions between beziers -- we'll use those
        # later.

        paths = []

        for path in self.csp:
            # See the documentation in the parent class for parse_path() for a
            # description of the format of the CSP.  Each bezier is constructed
            # using two neighboring 3-tuples in the list.

            flattened_path = []

            # iterate over pairs of 3-tuples
            for prev, current in zip(path[:-1], path[1:]):
                flattened_segment = self.flatten([[prev, current]])
                flattened_segment = [PyEmb.Point(x, y) for x, y in flattened_segment[0]]
                flattened_path.append(flattened_segment)

            paths.append(flattened_path)

        return zip(*paths)

    def validate_satin_column(self):
        # The node should have exactly two paths with no fill.  Each
        # path should have the same number of points, meaning that they
        # will both be made up of the same number of bezier curves.

        node_id = self.node.get("id")

        if len(self.csp) != 2:
            self.fatal("satin column: object %s invalid: expected exactly two sub-paths, but there are %s" % (node_id, len(csp)))

        if self.get_style("fill") is not None:
            self.fatal("satin column: object %s has a fill (but should not)" % node_id)

        if len(self.csp[0]) != len(self.csp[1]):
            self.fatal("satin column: object %s has two paths with an unequal number of points (%s and %s)" % (node_id, len(self.csp[0]), len(self.csp[1])))

    def offset_points(self, pos1, pos2, offset_px):
        # Expand or contract two points about their midpoint.  This is
        # useful for pull compensation and insetting underlay.

        distance = (pos1 - pos2).length()

        if distance < 0.0001:
            # if they're the same point, we don't know which direction
            # to offset in, so we have to just return the points
            return pos1, pos2

        # don't contract beyond the midpoint, or we'll start expanding
        if offset_px < -distance / 2.0:
            offset_px = -distance / 2.0

        pos1 = pos1 + (pos1 - pos2).unit() * offset_px
        pos2 = pos2 + (pos2 - pos1).unit() * offset_px

        return pos1, pos2

    def walk(self, path, start_pos, start_index, distance):
        # Move <distance> pixels along <path>, which is a sequence of line
        # segments defined by points.

        # <start_index> is the index of the line segment in <path> that
        # we're currently on.  <start_pos> is where along that line
        # segment we are.  Return a new position and index.

        # print >> dbg, "walk", start_pos, start_index, distance

        pos = start_pos
        index = start_index
        last_index = len(path) - 1
        distance_remaining = distance

        while True:
            if index >= last_index:
                return pos, index

            segment_end = path[index + 1]
            segment = segment_end - pos
            segment_length = segment.length()

            if segment_length > distance_remaining:
                # our walk ends partway along this segment
                return pos + segment.unit() * distance_remaining, index
            else:
                # our walk goes past the end of this segment, so advance
                # one point
                index += 1
                distance_remaining -= segment_length
                pos = segment_end

    def walk_paths(self, spacing, offset):
        # Take a bezier segment from each path in turn, and plot out an
        # equal number of points on each bezier.  Return the points plotted.
        # The points will be contracted or expanded by offset using
        # offset_points().

        points = [[], []]

        def add_pair(pos1, pos2):
            pos1, pos2 = self.offset_points(pos1, pos2, offset)
            points[0].append(pos1)
            points[1].append(pos2)

        # We may not be able to fit an even number of zigzags in each pair of
        # beziers.  We'll store the remaining bit of the beziers after handling
        # each section.
        remainder_path1 = []
        remainder_path2 = []

        for segment1, segment2 in self.flattened_beziers:
            subpath1 = remainder_path1 + segment1
            subpath2 = remainder_path2 + segment2

            len1 = shgeo.LineString(subpath1).length
            len2 = shgeo.LineString(subpath2).length

            # Base the number of stitches in each section on the _longest_ of
            # the two beziers. Otherwise, things could get too sparse when one
            # side is significantly longer (e.g. when going around a corner).
            # The risk here is that we poke a hole in the fabric if we try to
            # cram too many stitches on the short bezier.  The user will need
            # to avoid this through careful construction of paths.
            #
            # TODO: some commercial machine embroidery software compensates by
            # pulling in some of the "inner" stitches toward the center a bit.

            # note, this rounds down using integer-division
            num_points = max(len1, len2) / spacing

            spacing1 = len1 / num_points
            spacing2 = len2 / num_points

            pos1 = subpath1[0]
            index1 = 0

            pos2 = subpath2[0]
            index2 = 0

            for i in xrange(int(num_points)):
                add_pair(pos1, pos2)

                pos1, index1 = self.walk(subpath1, pos1, index1, spacing1)
                pos2, index2 = self.walk(subpath2, pos2, index2, spacing2)

            if index1 < len(subpath1) - 1:
                remainder_path1 = [pos1] + subpath1[index1 + 1:]
            else:
                remainder_path1 = []

            if index2 < len(subpath2) - 1:
                remainder_path2 = [pos2] + subpath2[index2 + 1:]
            else:
                remainder_path2 = []

        # We're off by one in the algorithm above, so we need one more
        # pair of points.  We also want to add points at the very end to
        # make sure we match the vectors on screen as best as possible.
        # Try to avoid doing both if they're going to stack up too
        # closely.

        end1 = remainder_path1[-1]
        end2 = remainder_path2[-1]

        if (end1 - pos1).length() > 0.3 * spacing:
            add_pair(pos1, pos2)

        add_pair(end1, end2)

        return points

    def do_contour_underlay(self):
        # "contour walk" underlay: do stitches up one side and down the
        # other.
        forward, back = self.walk_paths(self.contour_underlay_stitch_length,
                                        -self.contour_underlay_inset)
        return Patch(color=self.color, stitches=(forward + list(reversed(back))))

    def do_center_walk(self):
        # Center walk underlay is just a running stitch down and back on the
        # center line between the bezier curves.

        # Do it like contour underlay, but inset all the way to the center.
        forward, back = self.walk_paths(self.center_walk_underlay_stitch_length,
                                        -100000)
        return Patch(color=self.color, stitches=(forward + list(reversed(back))))

    def do_zigzag_underlay(self):
        # zigzag underlay, usually done at a much lower density than the
        # satin itself.  It looks like this:
        #
        # \/\/\/\/\/\/\/\/\/\/|
        # /\/\/\/\/\/\/\/\/\/\|
        #
        # In combination with the "contour walk" underlay, this is the
        # "German underlay" described here:
        #   http://www.mrxstitch.com/underlay-what-lies-beneath-machine-embroidery/

        patch = Patch(color=self.color)

        sides = self.walk_paths(self.zigzag_underlay_spacing / 2.0,
                                -self.zigzag_underlay_inset)

        # This organizes the points in each side in the order that they'll be
        # visited.
        sides = [sides[0][::2] + list(reversed(sides[0][1::2])),
                 sides[1][1::2] + list(reversed(sides[1][::2]))]

        # This fancy bit of iterable magic just repeatedly takes a point
        # from each side in turn.
        for point in chain.from_iterable(izip(*sides)):
            patch.add_stitch(point)

        return patch

    def do_satin(self):
        # satin: do a zigzag pattern, alternating between the paths.  The
        # zigzag looks like this to make the satin stitches look perpendicular
        # to the column:
        #
        # /|/|/|/|/|/|/|/|

        # print >> dbg, "satin", self.zigzag_spacing, self.pull_compensation

        patch = Patch(color=self.color)

        sides = self.walk_paths(self.zigzag_spacing, self.pull_compensation)

        # Like in zigzag_underlay(): take a point from each side in turn.
        for point in chain.from_iterable(izip(*sides)):
            patch.add_stitch(point)

        return patch

    def to_patches(self, last_patch):
        # Stitch a variable-width satin column, zig-zagging between two paths.

        # The algorithm will draw zigzags between each consecutive pair of
        # beziers.  The boundary points between beziers serve as "checkpoints",
        # allowing the user to control how the zigzags flow around corners.

        # First, verify that we have valid paths.
        self.validate_satin_column()

        patches = []

        if self.center_walk_underlay:
            patches.append(self.do_center_walk())

        if self.contour_underlay:
            patches.append(self.do_contour_underlay())

        if self.zigzag_underlay:
            # zigzag underlay comes after contour walk underlay, so that the
            # zigzags sit on the contour walk underlay like rail ties on rails.
            patches.append(self.do_zigzag_underlay())

        patches.append(self.do_satin())

        return patches


class Patch:

    def __init__(self, color=None, stitches=None):
        self.color = color
        self.stitches = stitches or []

    def __add__(self, other):
        if isinstance(other, Patch):
            return Patch(self.color, self.stitches + other.stitches)
        else:
            raise TypeError("Patch can only be added to another Patch")

    def add_stitch(self, stitch):
        self.stitches.append(stitch)

    def reverse(self):
        return Patch(self.color, self.stitches[::-1])


def patches_to_stitches(patch_list, collapse_len_px=0):
    stitches = []

    last_stitch = None
    last_color = None
    for patch in patch_list:
        jump_stitch = True
        for stitch in patch.stitches:
            if last_stitch and last_color == patch.color:
                l = (stitch - last_stitch).length()
                if l <= 0.1:
                    # filter out duplicate successive stitches
                    jump_stitch = False
                    continue

                if jump_stitch:
                    # consider collapsing jump stitch, if it is pretty short
                    if l < collapse_len_px:
                        # dbg.write("... collapsed\n")
                        jump_stitch = False

            # dbg.write("stitch color %s\n" % patch.color)

            newStitch = PyEmb.Stitch(stitch.x, stitch.y, patch.color, jump_stitch)
            stitches.append(newStitch)

            jump_stitch = False
            last_stitch = stitch
            last_color = patch.color

    return stitches


def stitches_to_paths(stitches):
    paths = []
    last_color = None
    last_stitch = None
    for stitch in stitches:
        if stitch.jump_stitch:
            if last_color == stitch.color:
                paths.append([None, []])
                if last_stitch is not None:
                    paths[-1][1].append(['M', last_stitch.as_tuple()])
                    paths[-1][1].append(['L', stitch.as_tuple()])
            last_color = None
        if stitch.color != last_color:
            paths.append([stitch.color, []])
        paths[-1][1].append(['L' if len(paths[-1][1]) > 0 else 'M', stitch.as_tuple()])
        last_color = stitch.color
        last_stitch = stitch
    return paths


def emit_inkscape(parent, stitches):
    for color, path in stitches_to_paths(stitches):
        # dbg.write('path: %s %s\n' % (color, repr(path)))
        inkex.etree.SubElement(parent,
                               inkex.addNS('path', 'svg'),
                               {'style': simplestyle.formatStyle(
                                   {'stroke': color if color is not None else '#000000',
                                    'stroke-width': "0.4",
                                    'fill': 'none'}),
                                   'd': simplepath.formatPath(path),
                                })


class Embroider(inkex.Effect):

    def __init__(self, *args, **kwargs):
        inkex.Effect.__init__(self)
        self.OptionParser.add_option("-r", "--row_spacing_mm",
                                     action="store", type="float",
                                     dest="row_spacing_mm", default=0.4,
                                     help="row spacing (mm)")
        self.OptionParser.add_option("-z", "--zigzag_spacing_mm",
                                     action="store", type="float",
                                     dest="zigzag_spacing_mm", default=1.0,
                                     help="zigzag spacing (mm)")
        self.OptionParser.add_option("-l", "--max_stitch_len_mm",
                                     action="store", type="float",
                                     dest="max_stitch_length_mm", default=3.0,
                                     help="max stitch length (mm)")
        self.OptionParser.add_option("--running_stitch_len_mm",
                                     action="store", type="float",
                                     dest="running_stitch_length_mm", default=3.0,
                                     help="running stitch length (mm)")
        self.OptionParser.add_option("-c", "--collapse_len_mm",
                                     action="store", type="float",
                                     dest="collapse_length_mm", default=0.0,
                                     help="max collapse length (mm)")
        self.OptionParser.add_option("-f", "--flatness",
                                     action="store", type="float",
                                     dest="flat", default=0.1,
                                     help="Minimum flatness of the subdivided curves")
        self.OptionParser.add_option("--hide_layers",
                                     action="store", type="choice",
                                     choices=["true", "false"],
                                     dest="hide_layers", default="true",
                                     help="Hide all other layers when the embroidery layer is generated")
        self.OptionParser.add_option("-O", "--output_format",
                                     action="store", type="choice",
                                     choices=["melco", "csv", "gcode"],
                                     dest="output_format", default="melco",
                                     help="File output format")
        self.OptionParser.add_option("-P", "--path",
                                     action="store", type="string",
                                     dest="path", default=".",
                                     help="Directory in which to store output file")
        self.OptionParser.add_option("-b", "--max-backups",
                                     action="store", type="int",
                                     dest="max_backups", default=5,
                                     help="Max number of backups of output files to keep.")
        self.OptionParser.add_option("-p", "--pixels_per_mm",
                                     action="store", type="int",
                                     dest="pixels_per_mm", default=10,
                                     help="Number of on-screen pixels per millimeter.")
        self.patches = []

    def handle_node(self, node):
        print >> dbg, "handling node", node.get('id'), node.get('tag')

        element = EmbroideryElement(node, self.options)

        if element.has_style('display') and element.get_style('display') is None:
            return

        if node.tag == SVG_DEFS_TAG:
            return

        for child in node:
            self.handle_node(child)

        if node.tag != SVG_PATH_TAG:
            return

        # dbg.write("Node: %s\n"%str((id, etree.tostring(node, pretty_print=True))))

        if element.get_boolean_param("satin_column"):
            self.elements.append(SatinColumn(node, self.options))
        else:
            elements = []

            if element.get_style("fill"):
                if element.get_boolean_param("auto_fill", True):
                    elements.append(AutoFill(node, self.options))
                else:
                    elements.append(Fill(node, self.options))

            if element.get_style("stroke"):
                elements.append(Stroke(node, self.options))

            if element.get_boolean_param("stroke_first", False):
                elements.reverse()

            self.elements.extend(elements)

    def get_output_path(self):
        svg_filename = self.document.getroot().get(inkex.addNS('docname', 'sodipodi'))
        csv_filename = svg_filename.replace('.svg', '.csv')
        output_path = os.path.join(self.options.path, csv_filename)

        def add_suffix(path, suffix):
            if suffix > 0:
                path = "%s.%s" % (path, suffix)

            return path

        def move_if_exists(path, suffix=0):
            source = add_suffix(path, suffix)

            if suffix >= self.options.max_backups:
                return

            dest = add_suffix(path, suffix + 1)

            if os.path.exists(source):
                move_if_exists(path, suffix + 1)
                os.rename(source, dest)

        move_if_exists(output_path)

        return output_path

    def hide_layers(self):
        for g in self.document.getroot().findall(SVG_GROUP_TAG):
            if g.get(inkex.addNS("groupmode", "inkscape")) == "layer":
                g.set("style", "display:none")

    def effect(self):
        # Printing anything other than a valid SVG on stdout blows inkscape up.
        old_stdout = sys.stdout
        sys.stdout = sys.stderr

        self.patch_list = []

        print >> dbg, "starting nodes: %s\n" % time.time()
        dbg.flush()

        self.elements = []

        if self.selected:
            # be sure to visit selected nodes in the order they're stacked in
            # the document
            for node in self.document.getroot().iter():
                if node.get("id") in self.selected:
                    self.handle_node(node)
        else:
            self.handle_node(self.document.getroot())

        print >> dbg, "finished nodes: %s" % time.time()
        dbg.flush()

        if not self.elements:
            if self.selected:
                inkex.errormsg("No embroiderable paths selected.")
            else:
                inkex.errormsg("No embroiderable paths found in document.")
            inkex.errormsg("Tip: use Path -> Object to Path to convert non-paths before embroidering.")
            return

        if self.options.hide_layers:
            self.hide_layers()

        patches = []
        for element in self.elements:
            if patches:
                last_patch = patches[-1]
            else:
                last_patch = None

            patches.extend(element.to_patches(last_patch))

        stitches = patches_to_stitches(patches, self.options.collapse_length_mm * self.options.pixels_per_mm)
        emb = PyEmb.Embroidery(stitches, self.options.pixels_per_mm)
        emb.export(self.get_output_path(), self.options.output_format)

        new_layer = inkex.etree.SubElement(self.document.getroot(), SVG_GROUP_TAG, {})
        new_layer.set('id', self.uniqueId("embroidery"))
        new_layer.set(inkex.addNS('label', 'inkscape'), 'Embroidery')
        new_layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer')

        emit_inkscape(new_layer, stitches)

        sys.stdout = old_stdout

if __name__ == '__main__':
    sys.setrecursionlimit(100000)
    e = Embroider()
    e.affect()
    dbg.flush()

dbg.close()