summaryrefslogtreecommitdiff
path: root/embroider.py
blob: eeab58540d57a6f8d3946e22ae5dd393a16efc91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
#!/usr/bin/python
#
# Important resources:
# lxml interface for walking SVG tree:
# http://codespeak.net/lxml/tutorial.html#elementpath
# Inkscape library for extracting paths from SVG:
# http://wiki.inkscape.org/wiki/index.php/Python_modules_for_extensions#simplepath.py
# Shapely computational geometry library:
# http://gispython.org/shapely/manual.html#multipolygons
# Embroidery file format documentation:
# http://www.achatina.de/sewing/main/TECHNICL.HTM

import sys
import traceback
sys.path.append("/usr/share/inkscape/extensions")
import os
import subprocess
from copy import deepcopy
import time
from itertools import chain, izip, groupby
from collections import deque
import inkex
import simplepath
import simplestyle
import simpletransform
from bezmisc import bezierlength, beziertatlength, bezierpointatt
from cspsubdiv import cspsubdiv
import cubicsuperpath
import math
import lxml.etree as etree
import shapely.geometry as shgeo
import shapely.affinity as affinity
import shapely.ops
import networkx
from pprint import pformat

import inkstitch
from inkstitch import _, cache, dbg, param, EmbroideryElement, get_nodes, SVG_POLYLINE_TAG, SVG_GROUP_TAG, PIXELS_PER_MM, get_viewbox_transform
from inkstitch.stitches import running_stitch
from inkstitch.utils import cut_path

class Fill(EmbroideryElement):
    element_name = _("Fill")

    def __init__(self, *args, **kwargs):
        super(Fill, self).__init__(*args, **kwargs)

    @property
    @param('auto_fill', _('Manually routed fill stitching'), type='toggle', inverse=True, default=True)
    def auto_fill(self):
        return self.get_boolean_param('auto_fill', True)

    @property
    @param('angle', _('Angle of lines of stitches'), unit='deg', type='float', default=0)
    @cache
    def angle(self):
        return math.radians(self.get_float_param('angle', 0))

    @property
    def color(self):
        return self.get_style("fill")

    @property
    @param('flip', _('Flip fill (start right-to-left)'), type='boolean', default=False)
    def flip(self):
        return self.get_boolean_param("flip", False)

    @property
    @param('row_spacing_mm', _('Spacing between rows'), unit='mm', type='float', default=0.25)
    def row_spacing(self):
        return max(self.get_float_param("row_spacing_mm", 0.25), 0.01)

    @property
    def end_row_spacing(self):
        return self.get_float_param("end_row_spacing_mm")

    @property
    @param('max_stitch_length_mm', _('Maximum fill stitch length'), unit='mm', type='float', default=3.0)
    def max_stitch_length(self):
        return max(self.get_float_param("max_stitch_length_mm", 3.0), 0.01)

    @property
    @param('staggers', _('Stagger rows this many times before repeating'), type='int', default=4)
    def staggers(self):
        return self.get_int_param("staggers", 4)

    @property
    @cache
    def paths(self):
        return self.flatten(self.parse_path())

    @property
    @cache
    def shape(self):
        poly_ary = []
        for sub_path in self.paths:
            point_ary = []
            last_pt = None
            for pt in sub_path:
                if (last_pt is not None):
                    vp = (pt[0] - last_pt[0], pt[1] - last_pt[1])
                    dp = math.sqrt(math.pow(vp[0], 2.0) + math.pow(vp[1], 2.0))
                    # dbg.write("dp %s\n" % dp)
                    if (dp > 0.01):
                        # I think too-close points confuse shapely.
                        point_ary.append(pt)
                        last_pt = pt
                else:
                    last_pt = pt
            if point_ary:
                poly_ary.append(point_ary)

        # shapely's idea of "holes" are to subtract everything in the second set
        # from the first. So let's at least make sure the "first" thing is the
        # biggest path.
        # TODO: actually figure out which things are holes and which are shells
        poly_ary.sort(key=lambda point_list: shgeo.Polygon(point_list).area, reverse=True)

        polygon = shgeo.MultiPolygon([(poly_ary[0], poly_ary[1:])])
        # print >> sys.stderr, "polygon valid:", polygon.is_valid
        return polygon

    @cache
    def east(self, angle):
        # "east" is the name of the direction that is to the right along a row
        return inkstitch.Point(1, 0).rotate(-angle)

    @cache
    def north(self, angle):
        return self.east(angle).rotate(math.pi / 2)

    def row_num(self, point, angle, row_spacing):
        return round((point * self.north(angle)) / row_spacing)

    def adjust_stagger(self, stitch, angle, row_spacing, max_stitch_length):
        row_num = self.row_num(stitch, angle, row_spacing)
        row_stagger = row_num % self.staggers
        stagger_offset = (float(row_stagger) / self.staggers) * max_stitch_length
        offset = ((stitch * self.east(angle)) - stagger_offset) % max_stitch_length

        return stitch - offset * self.east(angle)

    def intersect_region_with_grating(self, angle=None, row_spacing=None, end_row_spacing=None):
        if angle is None:
            angle = self.angle

        if row_spacing is None:
            row_spacing = self.row_spacing

        if end_row_spacing is None:
            end_row_spacing = self.end_row_spacing

        # the max line length I'll need to intersect the whole shape is the diagonal
        (minx, miny, maxx, maxy) = self.shape.bounds
        upper_left = inkstitch.Point(minx, miny)
        lower_right = inkstitch.Point(maxx, maxy)
        length = (upper_left - lower_right).length()
        half_length = length / 2.0

        # Now get a unit vector rotated to the requested angle.  I use -angle
        # because shapely rotates clockwise, but my geometry textbooks taught
        # me to consider angles as counter-clockwise from the X axis.
        direction = inkstitch.Point(1, 0).rotate(-angle)

        # and get a normal vector
        normal = direction.rotate(math.pi / 2)

        # I'll start from the center, move in the normal direction some amount,
        # and then walk left and right half_length in each direction to create
        # a line segment in the grating.
        center = inkstitch.Point((minx + maxx) / 2.0, (miny + maxy) / 2.0)

        # I need to figure out how far I need to go along the normal to get to
        # the edge of the shape.  To do that, I'll rotate the bounding box
        # angle degrees clockwise and ask for the new bounding box.  The max
        # and min y tell me how far to go.

        _, start, _, end = affinity.rotate(self.shape, angle, origin='center', use_radians=True).bounds

        # convert start and end to be relative to center (simplifies things later)
        start -= center.y
        end -= center.y

        height = abs(end - start)

        print >> dbg, "grating:", start, end, height, row_spacing, end_row_spacing

        # offset start slightly so that rows are always an even multiple of
        # row_spacing_px from the origin.  This makes it so that abutting
        # fill regions at the same angle and spacing always line up nicely.
        start -= (start + normal * center) % row_spacing

        rows = []

        current_row_y = start

        while current_row_y < end:
            p0 = center + normal * current_row_y + direction * half_length
            p1 = center + normal * current_row_y - direction * half_length
            endpoints = [p0.as_tuple(), p1.as_tuple()]
            grating_line = shgeo.LineString(endpoints)

            res = grating_line.intersection(self.shape)

            if (isinstance(res, shgeo.MultiLineString)):
                runs = map(lambda line_string: line_string.coords, res.geoms)
            else:
                if res.is_empty or len(res.coords) == 1:
                    # ignore if we intersected at a single point or no points
                    runs = []
                else:
                    runs = [res.coords]

            if runs:
                runs.sort(key=lambda seg: (inkstitch.Point(*seg[0]) - upper_left).length())

                if self.flip:
                    runs.reverse()
                    runs = map(lambda run: tuple(reversed(run)), runs)

                rows.append(runs)

            if end_row_spacing:
                current_row_y += row_spacing + (end_row_spacing - row_spacing) * ((current_row_y - start) / height)
            else:
                current_row_y += row_spacing

        return rows

    def make_quadrilateral(self, segment1, segment2):
        return shgeo.Polygon((segment1[0], segment1[1], segment2[1], segment2[0], segment1[0]))

    def is_same_run(self, segment1, segment2):
        if shgeo.LineString(segment1).distance(shgeo.LineString(segment2)) > self.row_spacing * 1.1:
            return False

        quad = self.make_quadrilateral(segment1, segment2)
        quad_area = quad.area
        intersection_area = self.shape.intersection(quad).area

        return (intersection_area / quad_area) >= 0.9

    def pull_runs(self, rows):
        # Given a list of rows, each containing a set of line segments,
        # break the area up into contiguous patches of line segments.
        #
        # This is done by repeatedly pulling off the first line segment in
        # each row and calling that a shape.  We have to be careful to make
        # sure that the line segments are part of the same shape.  Consider
        # the letter "H", with an embroidery angle of 45 degrees.  When
        # we get to the bottom of the lower left leg, the next row will jump
        # over to midway up the lower right leg.  We want to stop there and
        # start a new patch.

        # for row in rows:
        #    print >> sys.stderr, len(row)

        # print >>sys.stderr, "\n".join(str(len(row)) for row in rows)

        runs = []
        count = 0
        while (len(rows) > 0):
            run = []
            prev = None

            for row_num in xrange(len(rows)):
                row = rows[row_num]
                first, rest = row[0], row[1:]

                # TODO: only accept actually adjacent rows here
                if prev is not None and not self.is_same_run(prev, first):
                    break

                run.append(first)
                prev = first

                rows[row_num] = rest

            # print >> sys.stderr, len(run)
            runs.append(run)
            rows = [row for row in rows if len(row) > 0]

            count += 1

        return runs

    def stitch_row(self, patch, beg, end, angle, row_spacing, max_stitch_length):
        # We want our stitches to look like this:
        #
        # ---*-----------*-----------
        # ------*-----------*--------
        # ---------*-----------*-----
        # ------------*-----------*--
        # ---*-----------*-----------
        #
        # Each successive row of stitches will be staggered, with
        # num_staggers rows before the pattern repeats.  A value of
        # 4 gives a nice fill while hiding the needle holes.  The
        # first row is offset 0%, the second 25%, the third 50%, and
        # the fourth 75%.
        #
        # Actually, instead of just starting at an offset of 0, we
        # can calculate a row's offset relative to the origin.  This
        # way if we have two abutting fill regions, they'll perfectly
        # tile with each other.  That's important because we often get
        # abutting fill regions from pull_runs().


        beg = inkstitch.Point(*beg)
        end = inkstitch.Point(*end)

        row_direction = (end - beg).unit()
        segment_length = (end - beg).length()

        # only stitch the first point if it's a reasonable distance away from the
        # last stitch
        if not patch.stitches or (beg - patch.stitches[-1]).length() > 0.5 * PIXELS_PER_MM:
            patch.add_stitch(beg)

        first_stitch = self.adjust_stagger(beg, angle, row_spacing, max_stitch_length)

        # we might have chosen our first stitch just outside this row, so move back in
        if (first_stitch - beg) * row_direction < 0:
            first_stitch += row_direction * max_stitch_length

        offset = (first_stitch - beg).length()

        while offset < segment_length:
            patch.add_stitch(beg + offset * row_direction)
            offset += max_stitch_length

        if (end - patch.stitches[-1]).length() > 0.1 * PIXELS_PER_MM:
            patch.add_stitch(end)


    def section_to_patch(self, group_of_segments, angle=None, row_spacing=None, max_stitch_length=None):
        if max_stitch_length is None:
            max_stitch_length = self.max_stitch_length

        if row_spacing is None:
            row_spacing = self.row_spacing

        if angle is None:
            angle = self.angle

        # print >> sys.stderr, len(groups_of_segments)

        patch = Patch(color=self.color)
        first_segment = True
        swap = False
        last_end = None

        for segment in group_of_segments:
            (beg, end) = segment

            if (swap):
                (beg, end) = (end, beg)

            self.stitch_row(patch, beg, end, angle, row_spacing, max_stitch_length)

            swap = not swap

        return patch

    def to_patches(self, last_patch):
        rows_of_segments = self.intersect_region_with_grating()
        groups_of_segments = self.pull_runs(rows_of_segments)

        return [self.section_to_patch(group) for group in groups_of_segments]


class MaxQueueLengthExceeded(Exception):
    pass

class AutoFill(Fill):
    element_name = _("Auto-Fill")

    @property
    @param('auto_fill', _('Automatically routed fill stitching'), type='toggle', default=True)
    def auto_fill(self):
        return self.get_boolean_param('auto_fill', True)

    @property
    @cache
    def outline(self):
        return self.shape.boundary[0]

    @property
    @cache
    def outline_length(self):
        return self.outline.length

    @property
    def flip(self):
        return False

    @property
    @param('running_stitch_length_mm', _('Running stitch length (traversal between sections)'), unit='mm', type='float', default=1.5)
    def running_stitch_length(self):
        return max(self.get_float_param("running_stitch_length_mm", 1.5), 0.01)

    @property
    @param('fill_underlay', _('Underlay'), type='toggle', group=_('AutoFill Underlay'), default=False)
    def fill_underlay(self):
        return self.get_boolean_param("fill_underlay", default=False)

    @property
    @param('fill_underlay_angle', _('Fill angle (default: fill angle + 90 deg)'), unit='deg', group=_('AutoFill Underlay'), type='float')
    @cache
    def fill_underlay_angle(self):
        underlay_angle = self.get_float_param("fill_underlay_angle")

        if underlay_angle:
            return math.radians(underlay_angle)
        else:
            return self.angle + math.pi / 2.0

    @property
    @param('fill_underlay_row_spacing_mm', _('Row spacing (default: 3x fill row spacing)'), unit='mm', group=_('AutoFill Underlay'), type='float')
    @cache
    def fill_underlay_row_spacing(self):
        return self.get_float_param("fill_underlay_row_spacing_mm") or self.row_spacing * 3

    @property
    @param('fill_underlay_max_stitch_length_mm', _('Max stitch length'), unit='mm', group=_('AutoFill Underlay'), type='float')
    @cache
    def fill_underlay_max_stitch_length(self):
        return self.get_float_param("fill_underlay_max_stitch_length_mm") or self.max_stitch_length

    def which_outline(self, coords):
        """return the index of the outline on which the point resides

        Index 0 is the outer boundary of the fill region.  1+ are the
        outlines of the holes.
        """

        # I'd use an intersection check, but floating point errors make it
        # fail sometimes.

        point = shgeo.Point(*coords)
        outlines = list(enumerate(self.shape.boundary))
        closest = min(outlines, key=lambda (index, outline): outline.distance(point))

        return closest[0]

    def project(self, coords, outline_index):
        """project the point onto the specified outline

        This returns the distance along the outline at which the point resides.
        """

        return self.shape.boundary.project(shgeo.Point(*coords))

    def build_graph(self, segments, angle, row_spacing):
        """build a graph representation of the grating segments

        This function builds a specialized graph (as in graph theory) that will
        help us determine a stitching path.  The idea comes from this paper:

        http://www.sciencedirect.com/science/article/pii/S0925772100000158

        The goal is to build a graph that we know must have an Eulerian Path.
        An Eulerian Path is a path from edge to edge in the graph that visits
        every edge exactly once and ends at the node it started at.  Algorithms
        exist to build such a path, and we'll use Hierholzer's algorithm.

        A graph must have an Eulerian Path if every node in the graph has an
        even number of edges touching it.  Our goal here is to build a graph
        that will have this property.

        Based on the paper linked above, we'll build the graph as follows:

          * nodes are the endpoints of the grating segments, where they meet
            with the outer outline of the region the outlines of the interior
            holes in the region.
          * edges are:
            * each section of the outer and inner outlines of the region,
              between nodes
            * double every other edge in the outer and inner hole outlines

        Doubling up on some of the edges seems as if it will just mean we have
        to stitch those spots twice.  This may be true, but it also ensures
        that every node has 4 edges touching it, ensuring that a valid stitch
        path must exist.
        """

        graph = networkx.MultiGraph()

        # First, add the grating segments as edges.  We'll use the coordinates
        # of the endpoints as nodes, which networkx will add automatically.
        for segment in segments:
            # networkx allows us to label nodes with arbitrary data.  We'll
            # mark this one as a grating segment.
            graph.add_edge(*segment, key="segment")

        for node in graph.nodes():
            outline_index = self.which_outline(node)
            outline_projection = self.project(node, outline_index)

            # Tag each node with its index and projection.
            graph.add_node(node, index=outline_index, projection=outline_projection)

        nodes = list(graph.nodes(data=True)) # returns a list of tuples: [(node, {data}), (node, {data}) ...]
        nodes.sort(key=lambda node: (node[1]['index'], node[1]['projection']))

        for outline_index, nodes in groupby(nodes, key=lambda node: node[1]['index']):
            nodes = [ node for node, data in nodes ]

            # heuristic: change the order I visit the nodes in the outline if necessary.
            # If the start and endpoints are in the same row, I can't tell which row
            # I should treat it as being in.
            for i in xrange(len(nodes)):
                row0 = self.row_num(inkstitch.Point(*nodes[0]), angle, row_spacing)
                row1 = self.row_num(inkstitch.Point(*nodes[1]), angle, row_spacing)

                if row0 == row1:
                    nodes = nodes[1:] + [nodes[0]]
                else:
                    break

            # heuristic: it's useful to try to keep the duplicated edges in the same rows.
            # this prevents the BFS from having to search a ton of edges.
            row_num = min(row0, row1)
            if row_num % 2 == 0:
                edge_set = 0
            else:
                edge_set = 1

            #print >> sys.stderr, outline_index, "es", edge_set, "rn", row_num, inkstitch.Point(*nodes[0]) * self.north(angle), inkstitch.Point(*nodes[1]) * self.north(angle)

            # add an edge between each successive node
            for i, (node1, node2) in enumerate(zip(nodes, nodes[1:] + [nodes[0]])):
                graph.add_edge(node1, node2, key="outline")

                # duplicate edges contained in every other row (exactly half
                # will be duplicated)
                row_num = min(self.row_num(inkstitch.Point(*node1), angle, row_spacing),
                              self.row_num(inkstitch.Point(*node2), angle, row_spacing))

                # duplicate every other edge around this outline
                if i % 2 == edge_set:
                    graph.add_edge(node1, node2, key="extra")


        if not networkx.is_eulerian(graph):
            raise Exception(_("Unable to autofill.  This most often happens because your shape is made up of multiple sections that aren't connected."))

        return graph

    def node_list_to_edge_list(self, node_list):
        return zip(node_list[:-1], node_list[1:])

    def bfs_for_loop(self, graph, starting_node, max_queue_length=2000):
        to_search = deque()
        to_search.appendleft(([starting_node], set(), 0))

        while to_search:
            if len(to_search) > max_queue_length:
                raise MaxQueueLengthExceeded()

            path, visited_edges, visited_segments = to_search.pop()
            ending_node = path[-1]

            # get a list of neighbors paired with the key of the edge I can follow to get there
            neighbors = [
                        (node, key)
                            for node, adj in graph.adj[ending_node].iteritems()
                            for key in adj
                    ]

            # heuristic: try grating segments first
            neighbors.sort(key=lambda (dest, key): key == "segment", reverse=True)

            for next_node, key in neighbors:
                # skip if I've already followed this edge
                edge = (tuple(sorted((ending_node, next_node))), key)
                if edge in visited_edges:
                    continue

                new_path = path + [next_node]

                if key == "segment":
                    new_visited_segments = visited_segments + 1
                else:
                    new_visited_segments = visited_segments

                if next_node == starting_node:
                    # ignore trivial loops (down and back a doubled edge)
                    if len(new_path) > 3:
                        return self.node_list_to_edge_list(new_path), new_visited_segments

                new_visited_edges = visited_edges.copy()
                new_visited_edges.add(edge)

                to_search.appendleft((new_path, new_visited_edges, new_visited_segments))

    def find_loop(self, graph, starting_nodes):
        """find a loop in the graph that is connected to the existing path

        Start at a candidate node and search through edges to find a path
        back to that node.  We'll use a breadth-first search (BFS) in order to
        find the shortest available loop.

        In most cases, the BFS should not need to search far to find a loop.
        The queue should stay relatively short.

        An added heuristic will be used: if the BFS queue's length becomes
        too long, we'll abort and try a different starting point.  Due to
        the way we've set up the graph, there's bound to be a better choice
        somewhere else.
        """

        #loop = self.simple_loop(graph, starting_nodes[-2])

        #if loop:
        #    print >> sys.stderr, "simple_loop success"
        #    starting_nodes.pop()
        #    starting_nodes.pop()
        #    return loop

        loop = None
        retry = []
        max_queue_length = 2000

        while not loop:
            while not loop and starting_nodes:
                starting_node = starting_nodes.pop()
                #print >> sys.stderr, "find loop from", starting_node

                try:
                    # Note: if bfs_for_loop() returns None, no loop can be
                    # constructed from the starting_node (because the
                    # necessary edges have already been consumed).  In that
                    # case we discard that node and try the next.
                    loop = self.bfs_for_loop(graph, starting_node, max_queue_length)

                    if not loop:
                        print >> dbg, "failed on", starting_node
                        dbg.flush()
                except MaxQueueLengthExceeded:
                    print >> dbg, "gave up on", starting_node
                    dbg.flush()
                    # We're giving up on this node for now.  We could try
                    # this node again later, so add it to the bottm of the
                    # stack.
                    retry.append(starting_node)

            # Darn, couldn't find a loop.  Try harder.
            starting_nodes.extendleft(retry)
            max_queue_length *= 2

        starting_nodes.extendleft(retry)
        return loop

    def insert_loop(self, path, loop):
        """insert a sub-loop into an existing path

        The path will be a series of edges describing a path through the graph
        that ends where it starts.  The loop will be similar, and its starting
        point will be somewhere along the path.

        Insert the loop into the path, resulting in a longer path.

        Both the path and the loop will be a list of edges specified as a
        start and end point.  The points will be specified in order, such
        that they will look like this:

        ((p1, p2), (p2, p3), (p3, p4) ... (pn, p1))

        path will be modified in place.
        """

        loop_start = loop[0][0]

        for i, (start, end) in enumerate(path):
            if start == loop_start:
                break

        path[i:i] = loop

    def find_stitch_path(self, graph, segments):
        """find a path that visits every grating segment exactly once

        Theoretically, we just need to find an Eulerian Path in the graph.
        However, we don't actually care whether every single edge is visited.
        The edges on the outline of the region are only there to help us get
        from one grating segment to the next.

        We'll build a "cycle" (a path that ends where it starts) using
        Hierholzer's algorithm.  We'll stop once we've visited every grating
        segment.

        Hierholzer's algorithm says to select an arbitrary starting node at
        each step.  In order to produce a reasonable stitch path, we'll select
        the vertex carefully such that we get back-and-forth traversal like
        mowing a lawn.

        To do this, we'll use a simple heuristic: try to start from nodes in
        the order of most-recently-visited first.
        """

        original_graph = graph
        graph = graph.copy()
        num_segments = len(segments)
        segments_visited = 0
        nodes_visited = deque()

        # start with a simple loop: down one segment and then back along the
        # outer border to the starting point.
        path = [segments[0], list(reversed(segments[0]))]

        graph.remove_edges_from(path)

        segments_visited += 1
        nodes_visited.extend(segments[0])

        while segments_visited < num_segments:
            result = self.find_loop(graph, nodes_visited)

            if not result:
                print >> sys.stderr, _("Unexpected error while generating fill stitches. Please send your SVG file to lexelby@github.")
                break

            loop, segments = result

            print >> dbg, "found loop:", loop
            dbg.flush()

            segments_visited += segments
            nodes_visited += [edge[0] for edge in loop]
            graph.remove_edges_from(loop)

            self.insert_loop(path, loop)

            #if segments_visited >= 12:
            #    break

        # Now we have a loop that covers every grating segment.  It returns to
        # where it started, which is unnecessary, so we'll snip the last bit off.
        #while original_graph.has_edge(*path[-1], key="outline"):
        #    path.pop()

        return path

    def collapse_sequential_outline_edges(self, graph, path):
        """collapse sequential edges that fall on the same outline

        When the path follows multiple edges along the outline of the region,
        replace those edges with the starting and ending points.  We'll use
        these to stitch along the outline later on.
        """

        start_of_run = None
        new_path = []

        for edge in path:
            if graph.has_edge(*edge, key="segment"):
                if start_of_run:
                    # close off the last run
                    new_path.append((start_of_run, edge[0]))
                    start_of_run = None

                new_path.append(edge)
            else:
                if not start_of_run:
                    start_of_run = edge[0]

        if start_of_run:
            # if we were still in a run, close it off
            new_path.append((start_of_run, edge[1]))

        return new_path

    def outline_distance(self, outline, p1, p2):
        # how far around the outline (and in what direction) do I need to go
        # to get from p1 to p2?

        p1_projection = outline.project(shgeo.Point(p1))
        p2_projection = outline.project(shgeo.Point(p2))

        distance = p2_projection - p1_projection

        if abs(distance) > self.outline_length / 2.0:
            # if we'd have to go more than halfway around, it's faster to go
            # the other way
            if distance < 0:
                return distance + self.outline_length
            elif distance > 0:
                return distance - self.outline_length
            else:
                # this ought not happen, but just for completeness, return 0 if
                # p1 and p0 are the same point
                return 0
        else:
            return distance

    def connect_points(self, patch, start, end):
        outline_index = self.which_outline(start)
        outline = self.shape.boundary[outline_index]

        pos = outline.project(shgeo.Point(start))
        distance = self.outline_distance(outline, start, end)
        stitches = abs(int(distance / self.running_stitch_length))

        direction = math.copysign(1.0, distance)
        one_stitch = self.running_stitch_length * direction

        print >> dbg, "connect_points:", outline_index, start, end, distance, stitches, direction
        dbg.flush()

        patch.add_stitch(inkstitch.Point(*start))

        for i in xrange(stitches):
            pos = (pos + one_stitch) % self.outline_length

            patch.add_stitch(inkstitch.Point(*outline.interpolate(pos).coords[0]))

        end = inkstitch.Point(*end)
        if (end - patch.stitches[-1]).length() > 0.1 * PIXELS_PER_MM:
            patch.add_stitch(end)

        print >> dbg, "end connect_points"
        dbg.flush()

    def path_to_patch(self, graph, path, angle, row_spacing, max_stitch_length):
        path = self.collapse_sequential_outline_edges(graph, path)

        patch = Patch(color=self.color)
        #patch.add_stitch(inkstitch.Point(*path[0][0]))

        #for edge in path:
        #    patch.add_stitch(inkstitch.Point(*edge[1]))

        for edge in path:
            if graph.has_edge(*edge, key="segment"):
                self.stitch_row(patch, edge[0], edge[1], angle, row_spacing, max_stitch_length)
            else:
                self.connect_points(patch, *edge)

        return patch

    def do_auto_fill(self, angle, row_spacing, max_stitch_length, starting_point=None):
        patches = []

        print >> dbg, "start do_auto_fill"
        dbg.flush()

        rows_of_segments = self.intersect_region_with_grating(angle, row_spacing)
        segments = [segment for row in rows_of_segments for segment in row]

        graph = self.build_graph(segments, angle, row_spacing)
        path = self.find_stitch_path(graph, segments)

        if starting_point:
            patch = Patch(self.color)
            self.connect_points(patch, starting_point, path[0][0])
            patches.append(patch)

        patches.append(self.path_to_patch(graph, path, angle, row_spacing, max_stitch_length))

        print >> dbg, "end do_auto_fill"
        dbg.flush()

        return patches


    def to_patches(self, last_patch):
        patches = []

        if last_patch is None:
            starting_point = None
        else:
            nearest_point = self.outline.interpolate(self.outline.project(shgeo.Point(last_patch.stitches[-1])))
            starting_point = inkstitch.Point(*nearest_point.coords[0])

        if self.fill_underlay:
            patches.extend(self.do_auto_fill(self.fill_underlay_angle, self.fill_underlay_row_spacing, self.fill_underlay_max_stitch_length, starting_point))
            starting_point = patches[-1].stitches[-1]

        patches.extend(self.do_auto_fill(self.angle, self.row_spacing, self.max_stitch_length, starting_point))

        print >> dbg, "end AutoFill.to_patches"
        dbg.flush()

        return patches


class Stroke(EmbroideryElement):
    element_name = "Stroke"

    @property
    @param('satin_column', _('Satin stitch along paths'), type='toggle', inverse=True)
    def satin_column(self):
        return self.get_boolean_param("satin_column")

    @property
    def color(self):
        return self.get_style("stroke")

    @property
    @cache
    def width(self):
        stroke_width = self.get_style("stroke-width")

        if stroke_width.endswith("px"):
            stroke_width = stroke_width[:-2]

        return float(stroke_width)

    @property
    def dashed(self):
        return self.get_style("stroke-dasharray") is not None

    @property
    @param('running_stitch_length_mm', _('Running stitch length'), unit='mm', type='float', default=1.5)
    def running_stitch_length(self):
        return max(self.get_float_param("running_stitch_length_mm", 1.5), 0.01)

    @property
    @param('zigzag_spacing_mm', _('Zig-zag spacing (peak-to-peak)'), unit='mm', type='float', default=0.4)
    @cache
    def zigzag_spacing(self):
        return max(self.get_float_param("zigzag_spacing_mm", 0.4), 0.01)

    @property
    @param('repeats', _('Repeats'), type='int', default="1")
    def repeats(self):
        return self.get_int_param("repeats", 1)

    @property
    def paths(self):
        return self.flatten(self.parse_path())

    def is_running_stitch(self):
        # stroke width <= 0.5 pixels is deprecated in favor of dashed lines
        return self.dashed or self.width <= 0.5

    def stroke_points(self, emb_point_list, zigzag_spacing, stroke_width):
        patch = Patch(color=self.color)
        p0 = emb_point_list[0]
        rho = 0.0
        side = 1
        last_segment_direction = None

        for repeat in xrange(self.repeats):
            if repeat % 2 == 0:
                order = range(1, len(emb_point_list))
            else:
                order = range(-2, -len(emb_point_list) - 1, -1)

            for segi in order:
                p1 = emb_point_list[segi]

                # how far we have to go along segment
                seg_len = (p1 - p0).length()
                if (seg_len == 0):
                    continue

                # vector pointing along segment
                along = (p1 - p0).unit()

                # vector pointing to edge of stroke width
                perp = along.rotate_left() * (stroke_width * 0.5)

                if stroke_width == 0.0 and last_segment_direction is not None:
                    if abs(1.0 - along * last_segment_direction) > 0.5:
                        # if greater than 45 degree angle, stitch the corner
                        rho = zigzag_spacing
                        patch.add_stitch(p0)

                # iteration variable: how far we are along segment
                while (rho <= seg_len):
                    left_pt = p0 + along * rho + perp * side
                    patch.add_stitch(left_pt)
                    rho += zigzag_spacing
                    side = -side

                p0 = p1
                last_segment_direction = along
                rho -= seg_len

            if (p0 - patch.stitches[-1]).length() > 0.1:
                patch.add_stitch(p0)

        return patch

    def to_patches(self, last_patch):
        patches = []

        for path in self.paths:
            path = [inkstitch.Point(x, y) for x, y in path]
            if self.is_running_stitch():
                patch = self.stroke_points(path, self.running_stitch_length, stroke_width=0.0)
            else:
                patch = self.stroke_points(path, self.zigzag_spacing / 2.0, stroke_width=self.width)

            patches.append(patch)

        return patches


class SatinColumn(EmbroideryElement):
    element_name = _("Satin Column")

    def __init__(self, *args, **kwargs):
        super(SatinColumn, self).__init__(*args, **kwargs)

    @property
    @param('satin_column', _('Custom satin column'), type='toggle')
    def satin_column(self):
        return self.get_boolean_param("satin_column")

    @property
    def color(self):
        return self.get_style("stroke")

    @property
    @param('zigzag_spacing_mm', _('Zig-zag spacing (peak-to-peak)'), unit='mm', type='float', default=0.4)
    def zigzag_spacing(self):
        # peak-to-peak distance between zigzags
        return max(self.get_float_param("zigzag_spacing_mm", 0.4), 0.01)

    @property
    @param('pull_compensation_mm', _('Pull compensation'), unit='mm', type='float')
    def pull_compensation(self):
        # In satin stitch, the stitches have a tendency to pull together and
        # narrow the entire column.  We can compensate for this by stitching
        # wider than we desire the column to end up.
        return self.get_float_param("pull_compensation_mm", 0)

    @property
    @param('contour_underlay', _('Contour underlay'), type='toggle', group=_('Contour Underlay'))
    def contour_underlay(self):
        # "Contour underlay" is stitching just inside the rectangular shape
        # of the satin column; that is, up one side and down the other.
        return self.get_boolean_param("contour_underlay")

    @property
    @param('contour_underlay_stitch_length_mm', _('Stitch length'), unit='mm', group=_('Contour Underlay'), type='float', default=1.5)
    def contour_underlay_stitch_length(self):
        return max(self.get_float_param("contour_underlay_stitch_length_mm", 1.5), 0.01)

    @property
    @param('contour_underlay_inset_mm', _('Contour underlay inset amount'), unit='mm', group=_('Contour Underlay'), type='float', default=0.4)
    def contour_underlay_inset(self):
        # how far inside the edge of the column to stitch the underlay
        return self.get_float_param("contour_underlay_inset_mm", 0.4)

    @property
    @param('center_walk_underlay', _('Center-walk underlay'), type='toggle', group=_('Center-Walk Underlay'))
    def center_walk_underlay(self):
        # "Center walk underlay" is stitching down and back in the centerline
        # between the two sides of the satin column.
        return self.get_boolean_param("center_walk_underlay")

    @property
    @param('center_walk_underlay_stitch_length_mm', _('Stitch length'), unit='mm', group=_('Center-Walk Underlay'), type='float', default=1.5)
    def center_walk_underlay_stitch_length(self):
        return max(self.get_float_param("center_walk_underlay_stitch_length_mm", 1.5), 0.01)

    @property
    @param('zigzag_underlay', _('Zig-zag underlay'), type='toggle', group=_('Zig-zag Underlay'))
    def zigzag_underlay(self):
        return self.get_boolean_param("zigzag_underlay")

    @property
    @param('zigzag_underlay_spacing_mm', _('Zig-Zag spacing (peak-to-peak)'), unit='mm', group=_('Zig-zag Underlay'), type='float', default=3)
    def zigzag_underlay_spacing(self):
        return max(self.get_float_param("zigzag_underlay_spacing_mm", 3), 0.01)

    @property
    @param('zigzag_underlay_inset_mm', _('Inset amount (default: half of contour underlay inset)'), unit='mm', group=_('Zig-zag Underlay'), type='float')
    def zigzag_underlay_inset(self):
        # how far in from the edge of the satin the points in the zigzags
        # should be

        # Default to half of the contour underlay inset.  That is, if we're
        # doing both contour underlay and zigzag underlay, make sure the
        # points of the zigzag fall outside the contour underlay but inside
        # the edges of the satin column.
        return self.get_float_param("zigzag_underlay_inset_mm") or self.contour_underlay_inset / 2.0

    @property
    @cache
    def csp(self):
        return self.parse_path()

    @property
    @cache
    def flattened_beziers(self):
        if len(self.csp) == 2:
            return self.simple_flatten_beziers()
        else:
            return self.flatten_beziers_with_rungs()


    def flatten_beziers_with_rungs(self):
        input_paths = [self.flatten([path]) for path in self.csp]
        input_paths = [shgeo.LineString(path[0]) for path in input_paths]

        paths = input_paths[:]
        paths.sort(key=lambda path: path.length, reverse=True)

        # Imagine a satin column as a curvy ladder.
        # The two long paths are the "rails" of the ladder.  The remainder are
        # the "rungs".
        rails = paths[:2]
        rungs = shgeo.MultiLineString(paths[2:])

        # The rails should stay in the order they were in the original CSP.
        # (this lets the user control where the satin starts and ends)
        rails.sort(key=lambda rail: input_paths.index(rail))

        result = []

        for rail in rails:
            if not rail.is_simple:
                self.fatal(_("One or more rails crosses itself, and this is not allowed.  Please split into multiple satin columns."))

            # handle null intersections here?
            linestrings = shapely.ops.split(rail, rungs)

            print >> dbg, "rails and rungs", [str(rail) for rail in rails], [str(rung) for rung in rungs]
            if len(linestrings.geoms) < len(rungs.geoms) + 1:
                self.fatal(_("satin column: One or more of the rungs doesn't intersect both rails.") + "  " + _("Each rail should intersect both rungs once."))
            elif len(linestrings.geoms) > len(rungs.geoms) + 1:
                self.fatal(_("satin column: One or more of the rungs intersects the rails more than once.") + "  " + _("Each rail should intersect both rungs once."))

            paths = [[inkstitch.Point(*coord) for coord in ls.coords] for ls in linestrings.geoms]
            result.append(paths)

        return zip(*result)


    def simple_flatten_beziers(self):
        # Given a pair of paths made up of bezier segments, flatten
        # each individual bezier segment into line segments that approximate
        # the curves.  Retain the divisions between beziers -- we'll use those
        # later.

        paths = []

        for path in self.csp:
            # See the documentation in the parent class for parse_path() for a
            # description of the format of the CSP.  Each bezier is constructed
            # using two neighboring 3-tuples in the list.

            flattened_path = []

            # iterate over pairs of 3-tuples
            for prev, current in zip(path[:-1], path[1:]):
                flattened_segment = self.flatten([[prev, current]])
                flattened_segment = [inkstitch.Point(x, y) for x, y in flattened_segment[0]]
                flattened_path.append(flattened_segment)

            paths.append(flattened_path)

        return zip(*paths)

    def validate_satin_column(self):
        # The node should have exactly two paths with no fill.  Each
        # path should have the same number of points, meaning that they
        # will both be made up of the same number of bezier curves.

        node_id = self.node.get("id")

        if self.get_style("fill") is not None:
            self.fatal(_("satin column: object %s has a fill (but should not)") % node_id)

        if len(self.csp) == 2:
            if len(self.csp[0]) != len(self.csp[1]):
                self.fatal(_("satin column: object %(id)s has two paths with an unequal number of points (%(length1)d and %(length2)d)") % \
                             dict(id=node_id, length1=len(self.csp[0]), length2=len(self.csp[1])))

    def offset_points(self, pos1, pos2, offset_px):
        # Expand or contract two points about their midpoint.  This is
        # useful for pull compensation and insetting underlay.

        distance = (pos1 - pos2).length()

        if distance < 0.0001:
            # if they're the same point, we don't know which direction
            # to offset in, so we have to just return the points
            return pos1, pos2

        # don't contract beyond the midpoint, or we'll start expanding
        if offset_px < -distance / 2.0:
            offset_px = -distance / 2.0

        pos1 = pos1 + (pos1 - pos2).unit() * offset_px
        pos2 = pos2 + (pos2 - pos1).unit() * offset_px

        return pos1, pos2

    def walk(self, path, start_pos, start_index, distance):
        # Move <distance> pixels along <path>, which is a sequence of line
        # segments defined by points.

        # <start_index> is the index of the line segment in <path> that
        # we're currently on.  <start_pos> is where along that line
        # segment we are.  Return a new position and index.

        # print >> dbg, "walk", start_pos, start_index, distance

        pos = start_pos
        index = start_index
        last_index = len(path) - 1
        distance_remaining = distance

        while True:
            if index >= last_index:
                return pos, index

            segment_end = path[index + 1]
            segment = segment_end - pos
            segment_length = segment.length()

            if segment_length > distance_remaining:
                # our walk ends partway along this segment
                return pos + segment.unit() * distance_remaining, index
            else:
                # our walk goes past the end of this segment, so advance
                # one point
                index += 1
                distance_remaining -= segment_length
                pos = segment_end

    def walk_paths(self, spacing, offset):
        # Take a bezier segment from each path in turn, and plot out an
        # equal number of points on each bezier.  Return the points plotted.
        # The points will be contracted or expanded by offset using
        # offset_points().

        points = [[], []]

        def add_pair(pos1, pos2):
            pos1, pos2 = self.offset_points(pos1, pos2, offset)
            points[0].append(pos1)
            points[1].append(pos2)

        # We may not be able to fit an even number of zigzags in each pair of
        # beziers.  We'll store the remaining bit of the beziers after handling
        # each section.
        remainder_path1 = []
        remainder_path2 = []

        for segment1, segment2 in self.flattened_beziers:
            subpath1 = remainder_path1 + segment1
            subpath2 = remainder_path2 + segment2

            len1 = shgeo.LineString(subpath1).length
            len2 = shgeo.LineString(subpath2).length

            # Base the number of stitches in each section on the _longest_ of
            # the two beziers. Otherwise, things could get too sparse when one
            # side is significantly longer (e.g. when going around a corner).
            # The risk here is that we poke a hole in the fabric if we try to
            # cram too many stitches on the short bezier.  The user will need
            # to avoid this through careful construction of paths.
            #
            # TODO: some commercial machine embroidery software compensates by
            # pulling in some of the "inner" stitches toward the center a bit.

            # note, this rounds down using integer-division
            num_points = max(len1, len2) / spacing

            spacing1 = len1 / num_points
            spacing2 = len2 / num_points

            pos1 = subpath1[0]
            index1 = 0

            pos2 = subpath2[0]
            index2 = 0

            for i in xrange(int(num_points)):
                add_pair(pos1, pos2)

                pos1, index1 = self.walk(subpath1, pos1, index1, spacing1)
                pos2, index2 = self.walk(subpath2, pos2, index2, spacing2)

            if index1 < len(subpath1) - 1:
                remainder_path1 = [pos1] + subpath1[index1 + 1:]
            else:
                remainder_path1 = []

            if index2 < len(subpath2) - 1:
                remainder_path2 = [pos2] + subpath2[index2 + 1:]
            else:
                remainder_path2 = []

        # We're off by one in the algorithm above, so we need one more
        # pair of points.  We also want to add points at the very end to
        # make sure we match the vectors on screen as best as possible.
        # Try to avoid doing both if they're going to stack up too
        # closely.

        end1 = remainder_path1[-1]
        end2 = remainder_path2[-1]

        if (end1 - pos1).length() > 0.3 * spacing:
            add_pair(pos1, pos2)

        add_pair(end1, end2)

        return points

    def do_contour_underlay(self):
        # "contour walk" underlay: do stitches up one side and down the
        # other.
        forward, back = self.walk_paths(self.contour_underlay_stitch_length,
                                        -self.contour_underlay_inset)
        return Patch(color=self.color, stitches=(forward + list(reversed(back))))

    def do_center_walk(self):
        # Center walk underlay is just a running stitch down and back on the
        # center line between the bezier curves.

        # Do it like contour underlay, but inset all the way to the center.
        forward, back = self.walk_paths(self.center_walk_underlay_stitch_length,
                                        -100000)
        return Patch(color=self.color, stitches=(forward + list(reversed(back))))

    def do_zigzag_underlay(self):
        # zigzag underlay, usually done at a much lower density than the
        # satin itself.  It looks like this:
        #
        # \/\/\/\/\/\/\/\/\/\/|
        # /\/\/\/\/\/\/\/\/\/\|
        #
        # In combination with the "contour walk" underlay, this is the
        # "German underlay" described here:
        #   http://www.mrxstitch.com/underlay-what-lies-beneath-machine-embroidery/

        patch = Patch(color=self.color)

        sides = self.walk_paths(self.zigzag_underlay_spacing / 2.0,
                                -self.zigzag_underlay_inset)

        # This organizes the points in each side in the order that they'll be
        # visited.
        sides = [sides[0][::2] + list(reversed(sides[0][1::2])),
                 sides[1][1::2] + list(reversed(sides[1][::2]))]

        # This fancy bit of iterable magic just repeatedly takes a point
        # from each side in turn.
        for point in chain.from_iterable(izip(*sides)):
            patch.add_stitch(point)

        return patch

    def do_satin(self):
        # satin: do a zigzag pattern, alternating between the paths.  The
        # zigzag looks like this to make the satin stitches look perpendicular
        # to the column:
        #
        # /|/|/|/|/|/|/|/|

        # print >> dbg, "satin", self.zigzag_spacing, self.pull_compensation

        patch = Patch(color=self.color)

        sides = self.walk_paths(self.zigzag_spacing, self.pull_compensation)

        # Like in zigzag_underlay(): take a point from each side in turn.
        for point in chain.from_iterable(izip(*sides)):
            patch.add_stitch(point)

        return patch

    def to_patches(self, last_patch):
        # Stitch a variable-width satin column, zig-zagging between two paths.

        # The algorithm will draw zigzags between each consecutive pair of
        # beziers.  The boundary points between beziers serve as "checkpoints",
        # allowing the user to control how the zigzags flow around corners.

        # First, verify that we have valid paths.
        self.validate_satin_column()

        patches = []

        if self.center_walk_underlay:
            patches.append(self.do_center_walk())

        if self.contour_underlay:
            patches.append(self.do_contour_underlay())

        if self.zigzag_underlay:
            # zigzag underlay comes after contour walk underlay, so that the
            # zigzags sit on the contour walk underlay like rail ties on rails.
            patches.append(self.do_zigzag_underlay())

        patches.append(self.do_satin())

        return patches


class Polyline(EmbroideryElement):
    # Handle a <polyline> element, which is treated as a set of points to
    # stitch exactly.
    #
    # <polyline> elements are pretty rare in SVG, from what I can tell.
    # Anything you can do with a <polyline> can also be done with a <p>, and
    # much more.
    #
    # Notably, EmbroiderModder2 uses <polyline> elements when converting from
    # common machine embroidery file formats to SVG.  Handling those here lets
    # users use File -> Import to pull in existing designs they may have
    # obtained, for example purchased fonts.

    @property
    def points(self):
       # example: "1,2 0,0 1.5,3 4,2"

       points = self.node.get('points')
       points = points.split(" ")
       points = [[float(coord) for coord in point.split(",")] for point in points]

       return points

    @property
    def path(self):
        # A polyline is a series of connected line segments described by their
        # points.  In order to make use of the existing logic for incorporating
        # svg transforms that is in our superclass, we'll convert the polyline
        # to a degenerate cubic superpath in which the bezier handles are on
        # the segment endpoints.

        path = [[[point[:], point[:], point[:]] for point in self.points]]

        return path

    @property
    @cache
    def csp(self):
        csp = self.parse_path()

        return csp

    @property
    def color(self):
        # EmbroiderModder2 likes to use the `stroke` property directly instead
        # of CSS.
        return self.get_style("stroke") or self.node.get("stroke")

    @property
    def stitches(self):
        # For a <polyline>, we'll stitch the points exactly as they exist in
        # the SVG, with no stitch spacing interpolation, flattening, etc.

        # See the comments in the parent class's parse_path method for a
        # description of the CSP data structure.

        stitches = [point for handle_before, point, handle_after in self.csp[0]]

        return stitches

    def to_patches(self, last_patch):
        patch = Patch(color=self.color)

        for stitch in self.stitches:
            patch.add_stitch(inkstitch.Point(*stitch))

        return [patch]

def detect_classes(node):
    if node.tag == SVG_POLYLINE_TAG:
        return [Polyline]
    else:
        element = EmbroideryElement(node)

        if element.get_boolean_param("satin_column"):
            return [SatinColumn]
        else:
            classes = []

            if element.get_style("fill"):
                if element.get_boolean_param("auto_fill", True):
                    classes.append(AutoFill)
                else:
                    classes.append(Fill)

            if element.get_style("stroke"):
                classes.append(Stroke)

            if element.get_boolean_param("stroke_first", False):
                classes.reverse()

            return classes


class Patch:
    def __init__(self, color=None, stitches=None, trim_after=False, stop_after=False):
        self.color = color
        self.stitches = stitches or []
        self.trim_after = trim_after
        self.stop_after = stop_after

    def __add__(self, other):
        if isinstance(other, Patch):
            return Patch(self.color, self.stitches + other.stitches)
        else:
            raise TypeError("Patch can only be added to another Patch")

    def add_stitch(self, stitch):
        self.stitches.append(stitch)

    def reverse(self):
        return Patch(self.color, self.stitches[::-1])


def process_stop_after(stitches):
    # The user wants the machine to pause after this patch.  This can
    # be useful for applique and similar on multi-needle machines that
    # normally would not stop between colors.
    #
    # On such machines, the user assigns needles to the colors in the
    # design before starting stitching.  C01, C02, etc are normal
    # needles, but C00 is special.  For a block of stitches assigned
    # to C00, the machine will continue sewing with the last color it
    # had and pause after it completes the C00 block.
    #
    # That means we need to introduce an artificial color change
    # shortly before the current stitch so that the user can set that
    # to C00.  We'll go back 3 stitches and do that:

    if len(stitches) >= 3:
        stitches[-3].stop = True

    # and also add a color change on this stitch, completing the C00
    # block:

    stitches[-1].stop = True

    # reference for the above: https://github.com/lexelby/inkstitch/pull/29#issuecomment-359175447


def process_trim(stitches, next_stitch):
    # DST (and maybe other formats?) has no actual TRIM instruction.
    # Instead, 3 sequential JUMPs cause the machine to trim the thread.
    #
    # To support both DST and other formats, we'll add a TRIM and two
    # JUMPs.  The TRIM will be converted to a JUMP by libembroidery
    # if saving to DST, resulting in the 3-jump sequence.

    delta = next_stitch - stitches[-1]
    delta = delta * (1/4.0)

    pos = stitches[-1]

    for i in xrange(3):
        pos += delta
        stitches.append(inkstitch.Stitch(pos.x, pos.y, stitches[-1].color, jump=True))

    # first one should be TRIM instead of JUMP
    stitches[-3].jump = False
    stitches[-3].trim = True


def add_tie(stitches, tie_path):
    color = tie_path[0].color

    tie_path = cut_path(tie_path, 0.6)
    tie_stitches = running_stitch(tie_path, 0.3)
    tie_stitches = [inkstitch.Stitch(*stitch, color=color) for stitch in tie_stitches]

    stitches.extend(tie_stitches[1:])
    stitches.extend(list(reversed(tie_stitches))[1:])


def add_tie_off(stitches):
    if not stitches:
        return

    add_tie(stitches, list(reversed(stitches)))


def add_tie_in(stitches, upcoming_stitches):
    if not upcoming_stitches:
        return

    add_tie(stitches, upcoming_stitches)


def add_ties(original_stitches):
    """Add tie-off before and after trims, jumps, and color changes."""

    # we're going to copy most stitches over, adding tie in/off as needed
    stitches = []

    need_tie_in = True

    for i, stitch in enumerate(original_stitches):
        is_special = stitch.trim or stitch.jump or stitch.stop

        if is_special and not need_tie_in:
            add_tie_off(stitches)
            stitches.append(stitch)
            need_tie_in = True
        elif need_tie_in and not is_special:
            stitches.append(stitch)
            add_tie_in(stitches, original_stitches[i:])
            need_tie_in = False
        else:
            stitches.append(stitch)

    # add tie-off at the end if we ended on a normal stitch
    if not is_special:
        add_tie_off(stitches)

    # overwrite the stitch plan with our new one that contains ties
    original_stitches[:] = stitches


def patches_to_stitches(patch_list, collapse_len_px=3.0):
    stitches = []

    last_stitch = None
    last_color = None
    need_trim = False
    for patch in patch_list:
        if not patch.stitches:
            continue

        jump_stitch = True
        for stitch in patch.stitches:
            if last_stitch and last_color == patch.color:
                l = (stitch - last_stitch).length()
                if l <= 0.1:
                    # filter out duplicate successive stitches
                    jump_stitch = False
                    continue

                if jump_stitch:
                    # consider collapsing jump stitch, if it is pretty short
                    if l < collapse_len_px:
                        # dbg.write("... collapsed\n")
                        jump_stitch = False

            if stitches and last_color and last_color != patch.color:
                # add a color change
                stitches.append(inkstitch.Stitch(last_stitch.x, last_stitch.y, last_color, stop=True))

            if need_trim:
                process_trim(stitches, stitch)
                need_trim = False

            if jump_stitch:
                stitches.append(inkstitch.Stitch(stitch.x, stitch.y, patch.color, jump=True))

            stitches.append(inkstitch.Stitch(stitch.x, stitch.y, patch.color, jump=False))

            jump_stitch = False
            last_stitch = stitch
            last_color = patch.color

        if patch.trim_after:
            need_trim = True

        if patch.stop_after:
            process_stop_after(stitches)

    add_ties(stitches)

    return stitches

def stitches_to_polylines(stitches):
    polylines = []
    last_color = None
    last_stitch = None
    trimming = False

    for stitch in stitches:
        if stitch.color != last_color or stitch.trim:
            trimming = True
            polylines.append([stitch.color, []])

        if trimming and (stitch.jump or stitch.trim):
            continue

        trimming = False

        polylines[-1][1].append(stitch.as_tuple())

        last_color = stitch.color
        last_stitch = stitch

    return polylines

def emit_inkscape(parent, stitches):
    transform = get_viewbox_transform(parent.getroottree().getroot())

    # we need to correct for the viewbox
    transform = simpletransform.invertTransform(transform)
    transform = simpletransform.formatTransform(transform)

    for color, polyline in stitches_to_polylines(stitches):
        # dbg.write('polyline: %s %s\n' % (color, repr(polyline)))
        inkex.etree.SubElement(parent,
                               inkex.addNS('polyline', 'svg'),
                               {'style': simplestyle.formatStyle(
                                   {'stroke': color if color is not None else '#000000',
                                    'stroke-width': "0.4",
                                    'fill': 'none'}),
                                   'points': " ".join(",".join(str(coord) for coord in point) for point in polyline),
                                'transform': transform
                                })

def get_elements(effect):
    elements = []
    nodes = get_nodes(effect)

    for node in nodes:
        classes = detect_classes(node)
        elements.extend(cls(node) for cls in classes)

    return elements


def elements_to_patches(elements):
    patches = []
    for element in elements:
        if patches:
            last_patch = patches[-1]
        else:
            last_patch = None

        patches.extend(element.embroider(last_patch))

    return patches

class Embroider(inkex.Effect):

    def __init__(self, *args, **kwargs):
        inkex.Effect.__init__(self)
        self.OptionParser.add_option("-c", "--collapse_len_mm",
                                     action="store", type="float",
                                     dest="collapse_length_mm", default=3.0,
                                     help="max collapse length (mm)")
        self.OptionParser.add_option("--hide_layers",
                                     action="store", type="choice",
                                     choices=["true", "false"],
                                     dest="hide_layers", default="true",
                                     help="Hide all other layers when the embroidery layer is generated")
        self.OptionParser.add_option("-O", "--output_format",
                                     action="store", type="string",
                                     dest="output_format", default="csv",
                                     help="Output file extenstion (default: csv)")
        self.OptionParser.add_option("-P", "--path",
                                     action="store", type="string",
                                     dest="path", default=".",
                                     help="Directory in which to store output file")
        self.OptionParser.add_option("-F", "--output-file",
                                     action="store", type="string",
                                     dest="output_file",
                                     help="Output filename.")
        self.OptionParser.add_option("-b", "--max-backups",
                                     action="store", type="int",
                                     dest="max_backups", default=5,
                                     help="Max number of backups of output files to keep.")
        self.OptionParser.usage += _("\n\nSeeing a 'no such option' message?  Please restart Inkscape to fix.")

    def get_output_path(self):
        if self.options.output_file:
            output_path = os.path.join(self.options.path, self.options.output_file)
        else:
            svg_filename = self.document.getroot().get(inkex.addNS('docname', 'sodipodi'), "embroidery.svg")
            csv_filename = svg_filename.replace('.svg', '.%s' % self.options.output_format)
            output_path = os.path.join(self.options.path, csv_filename)

        def add_suffix(path, suffix):
            if suffix > 0:
                path = "%s.%s" % (path, suffix)

            return path

        def move_if_exists(path, suffix=0):
            source = add_suffix(path, suffix)

            if suffix >= self.options.max_backups:
                return

            dest = add_suffix(path, suffix + 1)

            if os.path.exists(source):
                move_if_exists(path, suffix + 1)

                if os.path.exists(dest):
                    os.remove(dest)

                os.rename(source, dest)

        move_if_exists(output_path)

        return output_path

    def hide_layers(self):
        for g in self.document.getroot().findall(SVG_GROUP_TAG):
            if g.get(inkex.addNS("groupmode", "inkscape")) == "layer":
                g.set("style", "display:none")

    def effect(self):
        # Printing anything other than a valid SVG on stdout blows inkscape up.
        old_stdout = sys.stdout
        sys.stdout = sys.stderr

        self.patch_list = []

        self.elements = get_elements(self)

        if not self.elements:
            if self.selected:
                inkex.errormsg(_("No embroiderable paths selected."))
            else:
                inkex.errormsg(_("No embroiderable paths found in document."))
            inkex.errormsg(_("Tip: use Path -> Object to Path to convert non-paths before embroidering."))
            return

        if self.options.hide_layers:
            self.hide_layers()

        patches = elements_to_patches(self.elements)
        stitches = patches_to_stitches(patches, self.options.collapse_length_mm * PIXELS_PER_MM)
        inkstitch.write_embroidery_file(self.get_output_path(), stitches, self.document.getroot())

        new_layer = inkex.etree.SubElement(self.document.getroot(), SVG_GROUP_TAG, {})
        new_layer.set('id', self.uniqueId("embroidery"))
        new_layer.set(inkex.addNS('label', 'inkscape'), _('Embroidery'))
        new_layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer')

        emit_inkscape(new_layer, stitches)

        sys.stdout = old_stdout

if __name__ == '__main__':
    sys.setrecursionlimit(100000)
    e = Embroider()

    try:
        e.affect()
    except KeyboardInterrupt:
        print >> dbg, "interrupted!"

        print >> dbg, traceback.format_exc()

    dbg.flush()