summaryrefslogtreecommitdiff
path: root/embroider.py
blob: 95807209f3acde232b347528a3fb9a3c73e34542 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
#!/usr/bin/python
#
# documentation: see included index.html
# LICENSE:
# Copyright 2010 by Jon Howell,
# Originally licensed under <a href="http://www.gnu.org/licenses/quick-guide-gplv3.html">GPLv3</a>.
# Copyright 2015 by Bas Wijnen <wijnen@debian.org>.
# New parts are licensed under AGPL3 or later.
# (Note that this means this work is licensed under the common part of those two: AGPL version 3.)
#
# Important resources:
# lxml interface for walking SVG tree:
# http://codespeak.net/lxml/tutorial.html#elementpath
# Inkscape library for extracting paths from SVG:
# http://wiki.inkscape.org/wiki/index.php/Python_modules_for_extensions#simplepath.py
# Shapely computational geometry library:
# http://gispython.org/shapely/manual.html#multipolygons
# Embroidery file format documentation:
# http://www.achatina.de/sewing/main/TECHNICL.HTM

import sys
sys.path.append("/usr/share/inkscape/extensions")
import os
import subprocess
from copy import deepcopy
import time
import inkex
import simplepath
import simplestyle
import simpletransform
from cspsubdiv import cspsubdiv
import cubicsuperpath
import PyEmb
import math
import random
import operator
import lxml.etree as etree
from lxml.builder import E
import shapely.geometry as shgeo
import shapely.affinity as affinity
from pprint import pformat

dbg = open("/tmp/embroider-debug.txt", "w")
PyEmb.dbg = dbg
#pixels_per_millimeter = 90.0 / 25.4

#this actually makes each pixel worth one tenth of a millimeter
pixels_per_millimeter = 10

# a 0.5pt stroke becomes a straight line.
STROKE_MIN = 0.5

def parse_boolean(s):
    if isinstance(s, bool):
        return s
    else:
        return s and s.lower in ('yes', 'y', 'true', 't', '1')

def get_param(node, param, default):
    value = node.get("embroider_" + param)

    if value is None or not value.strip():
        return default

    return value.strip()

def get_boolean_param(node, param, default=False):
    value = get_param(node, param, default)

    return parse_boolean(value)

def get_float_param(node, param, default=None):
    value = get_param(node, param, default)

    try:
        return float(value)
    except ValueError:
        return default

def get_int_param(node, param, default=None):
    value = get_param(node, param, default)

    try:
        return int(value)
    except ValueError:
        return default

def parse_path(node):
    path = cubicsuperpath.parsePath(node.get("d"))

#    print >> sys.stderr, pformat(path)

    # start with the identity transform
    transform = [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]

    # combine this node's transform with all parent groups' transforms
    transform = simpletransform.composeParents(node, transform)

    # apply the combined transform to this node's path
    simpletransform.applyTransformToPath(transform, path)

    return path

def flatten(path, flatness):
    """approximate a path containing beziers with a series of points"""

    cspsubdiv(path, flatness)

    flattened = []

    for comp in path:
        vertices = []
        for ctl in comp:
            vertices.append((ctl[1][0], ctl[1][1]))
        flattened.append(vertices)

    return flattened

def bboxarea(poly):
    x0=None
    x1=None
    y0=None
    y1=None
    for pt in poly:
        if (x0==None or pt[0]<x0): x0 = pt[0]
        if (x1==None or pt[0]>x1): x1 = pt[0]
        if (y0==None or pt[1]<y0): y0 = pt[1]
        if (y1==None or pt[1]>y1): y1 = pt[1]
    return (x1-x0)*(y1-y0)

def area(poly):
    return bboxarea(poly)

def byarea(a,b):
    return -cmp(area(a), area(b))

def cspToShapelyPolygon(path):
    poly_ary = []
    for sub_path in path:
        point_ary = []
        last_pt = None
        for pt in sub_path:
            if (last_pt!=None):
                vp = (pt[0]-last_pt[0],pt[1]-last_pt[1])
                dp = math.sqrt(math.pow(vp[0],2.0)+math.pow(vp[1],2.0))
                #dbg.write("dp %s\n" % dp)
                if (dp > 0.01):
                    # I think too-close points confuse shapely.
                    point_ary.append(pt)
                    last_pt = pt
            else:
                last_pt = pt
        poly_ary.append(point_ary)
    # shapely's idea of "holes" are to subtract everything in the second set
    # from the first. So let's at least make sure the "first" thing is the
    # biggest path.
    poly_ary.sort(byarea)

    polygon = shgeo.MultiPolygon([(poly_ary[0], poly_ary[1:])])
    return polygon

def shapelyCoordsToSvgD(geo):
    coords = list(geo.coords)
    new_path = []
    new_path.append(['M', coords[0]])
    for c in coords[1:]:
        new_path.append(['L', c])
    return simplepath.formatPath(new_path)

def shapelyLineSegmentToPyTuple(shline):
    tuple = ((shline.coords[0][0],shline.coords[0][1]),
            (shline.coords[1][0],shline.coords[1][1]))
    return tuple

def dupNodeAttrs(node):
    n2 = E.node()
    for k in node.attrib.keys():
        n2.attrib[k] = node.attrib[k]
    del n2.attrib["id"]
    del n2.attrib["d"]
    return n2

class Patch:
    def __init__(self, color, sortorder, stitches=None):
        self.color = color
        self.sortorder = sortorder
        if (stitches!=None):
            self.stitches = stitches
        else:
            self.stitches = []

    def addStitch(self, stitch):
        self.stitches.append(stitch)

    def reverse(self):
        return Patch(self.color, self.sortorder, self.stitches[::-1])

class DebugHole:
    pass

class PatchList:
    def __init__(self, patches):
        self.patches = patches

    def __len__(self):
        return len(self.patches)

    def sort_by_sortorder(self):
        def by_sort_order(a,b):
            return cmp(a.sortorder, b.sortorder)
        self.patches.sort(by_sort_order)

    def partition_by_color(self):
        self.sort_by_sortorder()
        #dbg.write("Sorted by sortorder:\n");
        #dbg.write("  %s\n" % ("\n".join(map(lambda p: str(p.sortorder), self.patches))))
        out = []
        lastPatch = None
        for patch in self.patches:
            if (lastPatch!=None and patch.sortorder==lastPatch.sortorder):
                out[-1].patches.append(patch)
            else:
                out.append(PatchList([patch]))
            lastPatch = patch
        #dbg.write("Emitted %s partitions\n" % len(out))
        return out

    def tsp_by_color(self):
        list_of_patchLists = self.partition_by_color()
        for patchList in list_of_patchLists:
            patchList.traveling_salesman()
        return PatchList(reduce(operator.add,
            map(lambda pl: pl.patches, list_of_patchLists)))

#    # TODO apparently dead code; replaced by partition_by_color above
#    def clump_like_colors_together(self):
#        out = PatchList([])
#        lastPatch = None
#        for patch in self.patches:
#            if (lastPatch!=None and patch.color==lastPatch.color):
#                out.patches[-1] = Patch(
#                    out.patches[-1].color,
#                    out.patches[-1].sortorder,
#                    out.patches[-1].stitches+patch.stitches)
#            else:
#                out.patches.append(patch)
#            lastPatch = patch
#        return out

    def get(self, i):
        if (i<0 or i>=len(self.patches)):
            return None
        return self.patches[i]

    def cost(self, a, b):
        if (a is None or b is None):
            rc = 0.0
        else:
            rc = (a.stitches[-1] - b.stitches[0]).length()
        #dbg.write("cost(%s, %s) = %5.1f\n" % (a, b, rc))
        return rc

    def total_cost(self):
        total = 0

        for i in xrange(1, len(self.patches)):
            total += self.cost(self.get(i-1), self.get(i))

        return total

    def try_swap(self, i, j):
        # i,j are indices;
        #dbg.write("swap(%d, %d)\n" % (i,j))
        i, j = sorted((i, j))
        neighbors = abs(i - j) == 1
        if neighbors:
            oldCost = sum((self.cost(self.get(i-1), self.get(i)),
                           self.cost(self.get(i), self.get(j)),
                           self.cost(self.get(j), self.get(j+1))))
        else:
            oldCost = sum((self.cost(self.get(i-1), self.get(i)),
                           self.cost(self.get(i), self.get(i+1)),
                           self.cost(self.get(j-1), self.get(j)),
                           self.cost(self.get(j), self.get(j+1))))
        npi = self.get(j)
        npj = self.get(i)
        rpi = npi.reverse()
        rpj = npj.reverse()
        options = [
            (npi,npj),
            (rpi,npj),
            (npi,rpj),
            (rpi,rpj),
        ]
        def costOf(np):
            (npi,npj) = np

            if abs(i - j) == 1:
                return sum((self.cost(self.get(i-1), npi),
                            self.cost(npi, npj),
                            self.cost(npj, self.get(j+1))))
            else:
                return sum((self.cost(self.get(i-1), npi),
                            self.cost(npi, self.get(i+1)),
                            self.cost(self.get(j-1), npj),
                            self.cost(npj, self.get(j+1))))
        costs = map(lambda o: (costOf(o), o), options)
        costs.sort()
        (cost,option) = costs[0]
        savings = oldCost - cost
        if (savings > 0):
            self.patches[i] = option[0]
            self.patches[j] = option[1]
            success = "!"
        else:
            success = "."

        #dbg.write("old %5.1f new %5.1f savings: %5.1f\n" % (oldCost, cost, savings))
        return success

    def try_reverse(self, i):
        #dbg.write("reverse(%d)\n" % i)
        oldCost = (self.cost(self.get(i-1), self.get(i))
            +self.cost(self.get(i), self.get(i+1)))
        reversed = self.get(i).reverse()
        newCost = (self.cost(self.get(i-1), reversed)
            +self.cost(reversed, self.get(i+1)))
        savings = oldCost - newCost
        if (savings > 0.0):
            self.patches[i] = reversed
            success = "#"
        else:
            success = "_"
        return success

    def traveling_salesman(self):
        # shockingly, this is non-optimal and pretty much non-efficient. Sorry.
        self.pointList = []
        for patch in self.patches:
            def visit(idx):
                ep = deepcopy(patch.stitches[idx])
                ep.patch = patch
                self.pointList.append(ep)

            visit(0)
            visit(-1)

        def linear_min(list, func):
            min_item = None
            min_value = None
            for item in list:
                value = func(item)
                #dbg.write('linear_min %s: value %s => %s (%s)\n' % (func, item, value, value<min_value))
                if (min_value==None or value<min_value):
                    min_item = item
                    min_value = value
            #dbg.write('linear_min final item %s value %s\n' % (min_item, min_value))
            return min_item

        sortedPatchList = PatchList([])
        def takePatchStartingAtPoint(point):
            patch = point.patch
            #dbg.write("takePatchStartingAtPoint angling for patch %s--%s\n" % (patch.stitches[0],patch.stitches[-1]))
            self.pointList = filter(lambda pt: pt.patch!=patch, self.pointList)
            reversed = ""
            if (point!=patch.stitches[0]):
                reversed = " (reversed)"
                #dbg.write('patch.stitches[0] %s point %s match %s\n' % (patch.stitches[0], point, point==patch.stitches[0]))
                patch = patch.reverse()
            sortedPatchList.patches.append(patch)
            #dbg.write('took patch %s--%s %s\n' % (patch.stitches[0], patch.stitches[-1], reversed))

        # Try a greedy algorithm starting from each point in turn, and pick
        # the best result.  O(n^2).

        min_cost = None
        min_path = []

        def mate(point):
            for p in self.pointList:
                if p is not point and p.patch == point.patch:
                    return p

        for starting_point in self.pointList:
            point_list = self.pointList[:]
            last_point = mate(starting_point)

            point_list.remove(starting_point)
            point_list.remove(last_point)

            path = [starting_point]
            cost = 0

            while point_list:
                next_point = min(point_list, key=lambda p: (p - last_point).length())
                cost += (next_point - last_point).length()

                path.append(next_point)
                last_point = mate(next_point)

                point_list.remove(next_point)
                point_list.remove(last_point)

            if min_cost is None or cost < min_cost:
                min_cost = cost
                min_path = path

        for point in min_path:
            takePatchStartingAtPoint(point)

        # install the initial result
        self.patches = sortedPatchList.patches

        if 1:
            # Then hill-climb.
            #dbg.write("len(self.patches) = %d\n" % len(self.patches))
            count = 0
            successStr = ""
            while (count < 100):
                i = random.randint(0, len(self.patches)-1)
                j = random.randint(0, len(self.patches)-1)
                successStr += self.try_swap(i,j)

                count += 1
            # tidy up at end as best we can
            for i in range(len(self.patches)):
                successStr += self.try_reverse(i)

            #dbg.write("success: %s\n" % successStr)

class EmbroideryObject:
    def __init__(self, patchList, row_spacing_px):
        self.patchList = patchList
        self.row_spacing_px = row_spacing_px


    def make_preamble_stitch(self, lastp, nextp):
        def fromPolar(r, phi):
            x = r * math.cos(phi)
            y = r * math.sin(phi)
            return (x, y)

        def toPolar(x, y):
            r = math.sqrt(x ** 2 + y ** 2)
            if r == 0:
                phi = 0
            elif y == 0:
                phi = 0 if x > 0 else math.pi
            else:
                phi = cmp(y, 0) * math.acos(x / r)
            return (r, phi)

        v = nextp - lastp
        (r, phi) = toPolar(v.x, v.y)

        PREAMBLE_MAX_DIST = 0.5 * pixels_per_millimeter  # 1/2mm
        if r < PREAMBLE_MAX_DIST:
            # nextp is close enough to lastp, so we don't generate
            # extra points in between, but just use nextp
            return nextp
        r = PREAMBLE_MAX_DIST
        (x, y) = fromPolar(r, phi)
        return PyEmb.Point(x, y) + lastp

    def emit_file(self, filename, output_format, collapse_len_px, add_preamble):
        emb = PyEmb.Embroidery()
        lastStitch = None
        lastColor = None
        for patch in self.patchList.patches:
            jumpStitch = True
            for stitch in patch.stitches:
                if lastStitch and lastColor == patch.color:
                    c = math.sqrt((stitch.x - lastStitch.x) ** 2 + (stitch.y - lastStitch.y) ** 2)
                    #dbg.write("stitch length: %f (%d/%d -> %d/%d)\n" % (c, lastStitch.x, lastStitch.y, stitch.x, stitch.y))

                    if c == 0:
                        # filter out duplicate successive stitches
                        jumpStitch = False
                        continue

                    if jumpStitch:
                        # consider collapsing jump stich, if it is pretty short
                        if c < collapse_len_px:
                            #dbg.write("... collapsed\n")
                            jumpStitch = False

                #dbg.write("stitch color %s\n" % patch.color)

                newStitch = PyEmb.Point(stitch.x, -stitch.y)
                newStitch.color = patch.color
                newStitch.jumpStitch = jumpStitch
                emb.addStitch(newStitch)

                if jumpStitch and add_preamble != "0":
                    locs = [ newStitch ]
                    i = 0
                    nextp = PyEmb.Point(patch.stitches[i].x, -patch.stitches[i].y)

                    try:
                        for j in xrange(1, 4):
                            if locs[-1] == nextp:
                                i += 1
                                nextp = PyEmb.Point(patch.stitches[i].x, -patch.stitches[i].y)
                            locs.append(self.make_preamble_stitch(locs[-1], nextp))
                    except IndexError:
                        # happens when the patch is very short and we increment i beyond the number of stitches
                        pass
                    #dbg.write("preamble locations: %s\n" % locs)

                    for j in add_preamble[1:]:
                        try:
                            stitch = deepcopy(locs[int(j)])
                            stitch.color = patch.color
                            stitch.jumpStitch = False
                            emb.addStitch(stitch)
                        except IndexError:
                            pass

                jumpStitch = False
                lastStitch = newStitch
                lastColor = patch.color

        dx, dy = emb.translate_to_origin()
        emb.scale(1.0/pixels_per_millimeter)

        fp = open(filename, "wb")

        if output_format == "melco":
            fp.write(emb.export_melco(dbg))
        elif output_format == "csv":
            fp.write(emb.export_csv(dbg))
        elif output_format == "gcode":
            fp.write(emb.export_gcode(dbg))
        fp.close()
        emb.scale(pixels_per_millimeter)
        emb.translate(dx, dy)
        return emb

    def emit_inkscape(self, parent, emb):
        emb.scale((1, -1));
        for color, path in emb.export_paths(dbg):
            dbg.write('path: %s %s\n' % (color, repr(path)))
            inkex.etree.SubElement(parent,
                inkex.addNS('path', 'svg'),
                {    'style':simplestyle.formatStyle(
                        { 'stroke': color if color is not None else '#000000',
                            'stroke-width':"1",
                            'fill': 'none' }),
                    'd':simplepath.formatPath(path),
                })

    def bbox(self):
        x = []
        y = []
        for patch in self.patchList.patches:
            for stitch in patch.stitches:
                x.append(stitch.x)
                y.append(stitch.y)
        return (min(x), min(y), max(x), max(y))

class SortOrder:
    def __init__(self, threadcolor, layer, preserve_layers):
        self.threadcolor = threadcolor
        if (preserve_layers):
            #dbg.write("preserve_layers is true: %s %s\n" % (layer, threadcolor));
            self.sorttuple = (layer, threadcolor)
        else:
            #dbg.write("preserve_layers is false:\n");
            self.sorttuple = (threadcolor,)

    def __cmp__(self, other):
        return cmp(self.sorttuple, other.sorttuple)

    def __repr__(self):
        return "sort %s color %s" % (self.sorttuple, self.threadcolor)

class Embroider(inkex.Effect):
    def __init__(self, *args, **kwargs):
        #dbg.write("args: %s\n" % repr(sys.argv))
        inkex.Effect.__init__(self)
        self.stacking_order_counter = 0
        self.OptionParser.add_option("-r", "--row_spacing_mm",
            action="store", type="float",
            dest="row_spacing_mm", default=0.4,
            help="row spacing (mm)")
        self.OptionParser.add_option("-z", "--zigzag_spacing_mm",
            action="store", type="float",
            dest="zigzag_spacing_mm", default=1.0,
            help="zigzag spacing (mm)")
        self.OptionParser.add_option("-l", "--max_stitch_len_mm",
            action="store", type="float",
            dest="max_stitch_len_mm", default=3.0,
            help="max stitch length (mm)")
        self.OptionParser.add_option("--running_stitch_len_mm",
            action="store", type="float",
            dest="running_stitch_len_mm", default=3.0,
            help="running stitch length (mm)")
        self.OptionParser.add_option("-c", "--collapse_len_mm",
            action="store", type="float",
            dest="collapse_len_mm", default=0.0,
            help="max collapse length (mm)")
        self.OptionParser.add_option("-f", "--flatness",
            action="store", type="float",
            dest="flat", default=0.1,
            help="Minimum flatness of the subdivided curves")
        self.OptionParser.add_option("-o", "--preserve_layers",
            action="store", type="choice",
            choices=["true","false"],
            dest="preserve_layers", default="false",
            help="Sort by stacking order instead of color")
        self.OptionParser.add_option("-H", "--hatch_filled_paths",
            action="store", type="choice",
            choices=["true","false"],
            dest="hatch_filled_paths", default="false",
            help="Use hatching lines instead of equally-spaced lines to fill paths")
        self.OptionParser.add_option("--hide_layers",
            action="store", type="choice",
            choices=["true","false"],
            dest="hide_layers", default="true",
            help="Hide all other layers when the embroidery layer is generated")
        self.OptionParser.add_option("-p", "--add_preamble",
            action="store", type="choice",
            choices=["0","010","01010","01210","012101210"],
            dest="add_preamble", default="0",
            help="Add preamble")
        self.OptionParser.add_option("-O", "--output_format",
            action="store", type="choice",
            choices=["melco", "csv", "gcode"],
            dest="output_format", default="melco",
            help="File output format")
        self.OptionParser.add_option("-F", "--filename",
            action="store", type="string",
            dest="filename", default="embroider-output.exp",
            help="Name (and possibly path) of output file")
        self.patches = []
        self.layer_cache = {}

    def get_sort_order(self, threadcolor, node):
        #print >> sys.stderr, "node", node.get("id"), self.layer_cache.get(node.get("id"))
        return SortOrder(threadcolor, self.layer_cache.get(node.get("id")), self.options.preserve_layers=="true")

    def process_one_path(self, node, shpath, threadcolor, sortorder, angle):
        #self.add_shapely_geo_to_svg(shpath.boundary, color="#c0c000")

        hatching = get_boolean_param(node, "hatching", self.hatching)
        row_spacing_px = get_float_param(node, "row_spacing", self.row_spacing_px)
        max_stitch_len_px = get_float_param(node, "max_stitch_length", self.max_stitch_len_px)

        rows_of_segments = self.intersect_region_with_grating(shpath, row_spacing_px, angle)
        segments = self.visit_segments_one_by_one(rows_of_segments, shpath)

        def small_stitches(patch, beg, end):
            vector = (end-beg)
            patch.addStitch(beg)
            old_dist = vector.length()
            if (old_dist < max_stitch_len_px):
                patch.addStitch(end)
                return
            one_stitch = vector.mul(1.0 / old_dist * max_stitch_len_px * random.random())
            beg = beg + one_stitch
            while (True):
                vector = (end-beg)
                dist = vector.length()
                assert(old_dist==None or dist<old_dist)
                old_dist = dist
                patch.addStitch(beg)
                if (dist < max_stitch_len_px):
                    patch.addStitch(end)
                    return

                one_stitch = vector.mul(1.0/dist*max_stitch_len_px)
                beg = beg + one_stitch

        swap = False
        patch = Patch(color=threadcolor,sortorder=sortorder)
        for (beg,end) in segments:
            if (swap):
                (beg,end)=(end,beg)
            if not hatching:
                swap = not swap
            small_stitches(patch, PyEmb.Point(*beg),PyEmb.Point(*end))
        return [patch]

    def intersect_region_with_grating(self, shpath, row_spacing_px, angle):
        # the max line length I'll need to intersect the whole shape is the diagonal
        (minx, miny, maxx, maxy) = shpath.bounds
        length = (PyEmb.Point(maxx, maxy) - PyEmb.Point(minx, miny)).length()
        half_length = length / 2.0

        # Now get a unit vector rotated to the requested angle.  I use -angle
        # because shapely rotates clockwise, but my geometry textbooks taught
        # me to consider angles as counter-clockwise from the X axis.
        direction = PyEmb.Point(1, 0).rotate(-angle)

        # and get a normal vector
        normal = direction.rotate(math.pi/2)

        # I'll start from the center, move in the normal direction some amount,
        # and then walk left and right half_length in each direction to create
        # a line segment in the grating.
        center = PyEmb.Point((minx + maxx) / 2.0, (miny + maxy) / 2.0)

        # I need to figure out how far I need to go along the normal to get to
        # the edge of the shape.  To do that, I'll rotate the bounding box
        # angle degrees clockwise and ask for the new bounding box.  The max
        # and min y tell me how far to go.

        _, start, _, end = affinity.rotate(shpath, angle, origin='center', use_radians = True).bounds
        start -= center.y
        end -= center.y

        # don't start right at the edge or we'll make a ridiculous single
        # stitch
        start += row_spacing_px / 2.0

        rows = []

        while start < end:
            p0 = center + normal.mul(start) + direction.mul(half_length)
            p1 = center + normal.mul(start) - direction.mul(half_length)
            endpoints = [p0.as_tuple(), p1.as_tuple()]
            shline = shgeo.LineString(endpoints)

            res = shline.intersection(shpath)

            if (isinstance(res, shgeo.MultiLineString)):
                runs = map(shapelyLineSegmentToPyTuple, res.geoms)
            else:
                runs = [shapelyLineSegmentToPyTuple(res)]

            if self.hatching and len(rows) > 0:
                rows.append([(rows[-1][0][1], runs[0][0])])

            rows.append(runs)

            start += row_spacing_px
        return rows

    def visit_segments_one_by_one(self, rows, shpath):
        # Given a list of rows, each containing a set of line segments,
        # break the area up into contiguous patches of line segments.
        #
        # This is done by repeatedly pulling off the first line segment in
        # each row and calling that a shape.  We have to be careful to make
        # sure that the line segments are part of the same shape.  Consider
        # the letter "H", with an embroidery angle of 45 degrees.  When
        # we get to the bottom of the lower left leg, the next row will jump
        # over to midway up the lower right leg.  We want to stop there and
        # start a new patch.

        def make_quadrilateral(segment1, segment2):
            return shgeo.Polygon((segment1[0], segment1[1], segment2[1], segment2[0], segment1[0]))

        def pull_runs(rows):
            new_rows = []
            run = []
            prev = None
            done = False
            for r in rows:
                if done:
                    new_rows.append(r)
                    continue

                (first,rest) = (r[0], r[1:])

                if prev is not None:
                    quad = make_quadrilateral(prev, first)
                    quad_area = quad.area
                    intersection_area = shpath.intersection(quad).area

                    if intersection_area / quad_area < .9:
                        new_rows.append(r)
                        done = True
                        continue

                run.append(first)
                prev = first
                if (len(rest)>0):
                    new_rows.append(rest)
            return (run, new_rows)

        linearized_runs = []
        count = 0
        while (len(rows) > 0):
            (one_run,rows) = pull_runs(rows)
            linearized_runs.extend(one_run)

            rows = rows[::-1]
            count += 1
        return linearized_runs

    def handle_node(self, node):
        if (node.tag == inkex.addNS('g', 'svg')):
            #dbg.write("%s\n"%str((id, etree.tostring(node, pretty_print=True))))
            #dbg.write("not a path; recursing:\n")
            for child in node.iter(self.svgpath):
                self.handle_node(child)
            return

        #dbg.write("Node: %s\n"%str((id, etree.tostring(node, pretty_print=True))))

        israw = parse_boolean(node.get('embroider_raw'))
        if (israw):
            self.patchList.patches.extend(self.path_to_patch_list(node))
        else:
            if (self.get_style(node, "fill")!=None):
                self.patchList.patches.extend(self.filled_region_to_patchlist(node))
            if (self.get_style(node, "stroke")!=None):
                self.patchList.patches.extend(self.path_to_patch_list(node))

    def get_style(self, node, style_name):
        style = simplestyle.parseStyle(node.get("style"))
        if (style_name not in style):
            return None
        value = style[style_name]
        if (value==None or value=="none"):
            return None
        return value

    def cache_layers(self):
        self.layer_cache = {}

        layer_tag = inkex.addNS("g", "svg")
        group_attr = inkex.addNS('groupmode', 'inkscape')


        def is_layer(node):
            return node.tag == layer_tag and node.get(group_attr) == "layer"

        def process(node, layer=0):
            if is_layer(node):
                layer += 1
            else:
                self.layer_cache[node.get("id")] = layer

            for child in node:
                layer = process(child, layer)

            return layer

        process(self.document.getroot())

    def effect(self):
        if self.options.preserve_layers == "true":
            self.cache_layers()
            #print >> sys.stderr, "cached stacking order:", self.stacking_order

        self.row_spacing_px = self.options.row_spacing_mm * pixels_per_millimeter
        self.zigzag_spacing_px = self.options.zigzag_spacing_mm * pixels_per_millimeter
        self.max_stitch_len_px = self.options.max_stitch_len_mm*pixels_per_millimeter
        self.running_stitch_len_px = self.options.running_stitch_len_mm*pixels_per_millimeter
        self.collapse_len_px = self.options.collapse_len_mm*pixels_per_millimeter
        self.hatching = self.options.hatch_filled_paths == "true"

        self.svgpath = inkex.addNS('path', 'svg')
        self.patchList = PatchList([])
        for node in self.selected.itervalues():
            self.handle_node(node)

        if not self.patchList:
            inkex.errormsg("No paths selected.")
            return

        self.patchList = self.patchList.tsp_by_color()
        #dbg.write("patch count: %d\n" % len(self.patchList.patches))

        if self.options.hide_layers:
            self.hide_layers()

        eo = EmbroideryObject(self.patchList, self.row_spacing_px)
        emb = eo.emit_file(self.options.filename, self.options.output_format,
                 self.collapse_len_px, self.options.add_preamble)

        new_layer = inkex.etree.SubElement(self.document.getroot(),
                inkex.addNS('g', 'svg'), {})
        new_layer.set('id', self.uniqueId("embroidery"))
        new_layer.set(inkex.addNS('label', 'inkscape'), 'Embroidery')
        new_layer.set(inkex.addNS('groupmode', 'inkscape'), 'layer')
        eo.emit_inkscape(new_layer, emb)

    def emit_inkscape_bbox(self, parent, eo):
        (x0, y0, x1, y1) = eo.bbox()
        new_path = []
        new_path.append(['M', (x0,y0)])
        new_path.append(['L', (x1,y0)])
        new_path.append(['L', (x1,y1)])
        new_path.append(['L', (x0,y1)])
        new_path.append(['L', (x0,y0)])
        inkex.etree.SubElement(parent,
            inkex.addNS('path', 'svg'),
            {    'style':simplestyle.formatStyle(
                    { 'stroke': '#ff00ff',
                        'stroke-width':str(1),
                        'fill': 'none' }),
                'd':simplepath.formatPath(new_path),
            })

    def hide_layers(self):
        for g in self.document.getroot().findall(inkex.addNS("g","svg")):
            if g.get(inkex.addNS("groupmode", "inkscape")) == "layer":
                g.set("style", "display:none")

    def path_to_patch_list(self, node):
        threadcolor = simplestyle.parseStyle(node.get("style"))["stroke"]
        stroke_width_str = simplestyle.parseStyle(node.get("style"))["stroke-width"]
        if (stroke_width_str.endswith("px")):
            # don't really know how we should be doing unit conversions.
            # but let's hope px are kind of like pts?
            stroke_width_str = stroke_width_str[:-2]
        stroke_width = float(stroke_width_str)
        #dbg.write("stroke_width is <%s>\n" % repr(stroke_width))
        #dbg.flush()

        running_stitch_len_px = get_float_param(node, "stitch_length", self.running_stitch_len_px)
        zigzag_spacing_px = get_float_param(node, "zigzag_spacing", self.zigzag_spacing_px)
        repeats = get_int_param(node, "repeats", 1)

        sortorder = self.get_sort_order(threadcolor, node)
        paths = flatten(parse_path(node), self.options.flat)

        # regularize the points lists.
        # (If we're parsing beziers, there will be a list of multi-point
        # subarrays.)

        patches = []

        for path in paths:
            path = [PyEmb.Point(x, y) for x, y in path]
            if (stroke_width <= STROKE_MIN):
                #dbg.write("self.max_stitch_len_px = %s\n" % self.max_stitch_len_px)
                patch = self.stroke_points(path, running_stitch_len_px, 0.0, repeats, threadcolor, sortorder)
            else:
                patch = self.stroke_points(path, zigzag_spacing_px*0.5, stroke_width, repeats, threadcolor, sortorder)
            patches.extend(patch)

        return patches

    def stroke_points(self, emb_point_list, zigzag_spacing_px, stroke_width, repeats, threadcolor, sortorder):
        patch = Patch(color=threadcolor, sortorder=sortorder)
        p0 = emb_point_list[0]
        rho = 0.0
        fact = 1

        for repeat in xrange(repeats):
            if repeat % 2 == 0:
                order = range(1, len(emb_point_list))
            else:
                order = range(-2, -len(emb_point_list) - 1, -1)

            for segi in order:
                p1 = emb_point_list[segi]

                # how far we have to go along segment
                seg_len = (p1 - p0).length()
                if (seg_len == 0):
                    continue

                # vector pointing along segment
                along = (p1 - p0).unit()
                # vector pointing to edge of stroke width
                perp = along.rotate_left().mul(stroke_width*0.5)

                # iteration variable: how far we are along segment
                while (rho <= seg_len):
                    left_pt = p0+along.mul(rho)+perp.mul(fact)
                    patch.addStitch(left_pt)
                    rho += zigzag_spacing_px
                    fact = -fact

                p0 = p1
                rho -= seg_len

        return [patch]

    def filled_region_to_patchlist(self, node):
        angle = math.radians(float(get_float_param(node,'angle',0)))
        paths = flatten(parse_path(node), self.options.flat)
        shapelyPolygon = cspToShapelyPolygon(paths)
        threadcolor = simplestyle.parseStyle(node.get("style"))["fill"]
        sortorder = self.get_sort_order(threadcolor, node)
        return self.process_one_path(
                node,
                shapelyPolygon,
                threadcolor,
                sortorder,
                angle)

    #TODO def make_stroked_patch(self, node):

if __name__ == '__main__':
    sys.setrecursionlimit(100000);
    e = Embroider()
    e.affect()
    #dbg.write("aaaand, I'm done. seeeya!\n")
    dbg.flush()

dbg.close()