1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
# Authors: see git history
#
# Copyright (c) 2022 Authors
# Licensed under the GNU GPL version 3.0 or later. See the file LICENSE for details.
from inkex import Boolean, Group, PathElement, Transform, errormsg
from inkex.units import convert_unit
from shapely.geometry import (LineString, MultiLineString, MultiPolygon, Point,
Polygon)
from shapely.ops import linemerge, nearest_points, split, voronoi_diagram
from ..elements import FillStitch, Stroke
from ..i18n import _
from ..stitches.running_stitch import running_stitch
from ..svg import PIXELS_PER_MM, get_correction_transform
from ..utils.geometry import Point as InkstitchPoint
from ..utils.geometry import line_string_to_point_list
from .base import InkstitchExtension
class FillToStroke(InkstitchExtension):
def __init__(self, *args, **kwargs):
InkstitchExtension.__init__(self, *args, **kwargs)
self.arg_parser.add_argument("--options", dest="options", type=str, default="")
self.arg_parser.add_argument("--info", dest="help", type=str, default="")
self.arg_parser.add_argument("-t", "--threshold_mm", dest="threshold_mm", type=float, default=10)
self.arg_parser.add_argument("-o", "--keep_original", dest="keep_original", type=Boolean, default=False)
self.arg_parser.add_argument("-d", "--dashed_line", dest="dashed_line", type=Boolean, default=True)
self.arg_parser.add_argument("-w", "--line_width_mm", dest="line_width_mm", type=float, default=1)
self.arg_parser.add_argument("-g", "--close_gaps", dest="close_gaps", type=Boolean, default=False)
def effect(self):
if not self.svg.selected or not self.get_elements():
errormsg(_("Please select one or more fill objects to render the centerline."))
return
cut_lines = []
fill_shapes = []
fill_shapes, cut_lines = self._get_shapes()
if not fill_shapes:
errormsg(_("Please select one or more fill objects to render the centerline."))
return
# convert user input from mm to px
self.threshold = self.options.threshold_mm * PIXELS_PER_MM
self.line_width = self.options.line_width_mm * PIXELS_PER_MM
# insert centerline group before the first selected element
first = fill_shapes[0].node
parent = first.getparent()
index = parent.index(first) + 1
centerline_group = Group.new("Centerline Group", id=self.uniqueId("centerline_group_"))
parent.insert(index, centerline_group)
for element in fill_shapes:
transform = element.node.transform @ Transform(get_correction_transform(element.node, child=True))
dashed = "stroke-dasharray:12,1.5;" if self.options.dashed_line else ""
stroke_width = convert_unit(self.line_width, self.svg.unit)
color = element.node.style('fill')
style = "fill:none;stroke:%s;stroke-width:%s;%s" % (color, stroke_width, dashed)
multipolygon = element.shape
for cut_line in cut_lines:
split_polygon = split(multipolygon, cut_line)
poly = [polygon for polygon in split_polygon.geoms if isinstance(polygon, Polygon)]
multipolygon = MultiPolygon(poly)
lines = []
for polygon in multipolygon.geoms:
multilinestring = self._get_centerline(polygon)
if multilinestring is None:
continue
lines.extend(multilinestring.geoms)
if self.options.close_gaps:
lines = self._close_gaps(lines, cut_lines)
# insert new elements
self._insert_elements(lines, centerline_group, index, transform, style)
# clean up
if not self.options.keep_original:
self._remove_elements()
def _get_shapes(self):
fill_shapes = []
cut_lines = []
for element in self.elements:
if isinstance(element, FillStitch):
fill_shapes.append(element)
elif isinstance(element, Stroke):
cut_lines.extend(list(element.as_multi_line_string().geoms))
return fill_shapes, cut_lines
def _remove_elements(self):
for element in self.elements:
# it is possible, that we get one element twice (if it has both, a fill and a stroke)
# just ignore the second time
try:
element.node.getparent().remove(element.node)
except AttributeError:
pass
def _get_high_res_polygon(self, polygon):
# use running stitch method
runs = [running_stitch(line_string_to_point_list(polygon.exterior), 1, 0.1)]
if len(runs[0]) < 3:
return
for interior in polygon.interiors:
shape = running_stitch(line_string_to_point_list(interior), 1, 0.1)
if len(shape) >= 3:
runs.append(shape)
return MultiPolygon([(runs[0], runs[1:])])
def _get_centerline(self, polygon):
# increase the resolution of the polygon
polygon = self._get_high_res_polygon(polygon)
if polygon is isinstance(polygon, MultiPolygon):
return
# generate voronoi centerline
multilinestring = self._get_voronoi_centerline(polygon)
if multilinestring is None:
return
# dead ends
dead_ends = self._get_dead_end_lines(multilinestring)
# avoid the splitting of line ends
multilinestring = self._repair_splitted_ends(polygon, multilinestring, dead_ends)
# update dead ends
dead_ends = self._get_dead_end_lines(multilinestring)
# filter small dead ends
multilinestring = self._filter_short_dead_ends(multilinestring, dead_ends)
if multilinestring is None:
return
# simplify polygon
multilinestring = self._ensure_multilinestring(multilinestring.simplify(0.1))
if multilinestring is None:
return
return multilinestring
def _get_voronoi_centerline(self, polygon):
lines = voronoi_diagram(polygon, edges=True).geoms[0]
if not isinstance(lines, MultiLineString):
return
multilinestring = []
for line in lines.geoms:
if polygon.covers(line):
multilinestring.append(line)
lines = linemerge(multilinestring)
if lines.is_empty:
return
return self._ensure_multilinestring(lines)
def _get_start_and_end_points(self, multilinestring):
points = []
for line in multilinestring.geoms:
points.extend(line.coords[::len(line.coords)-1])
return points
def _get_dead_end_lines(self, multilinestring):
start_and_end_points = self._get_start_and_end_points(multilinestring)
dead_ends = []
for line in multilinestring.geoms:
num_neighbours_start = start_and_end_points.count(line.coords[0]) - 1
num_neighbours_end = start_and_end_points.count(line.coords[-1]) - 1
if num_neighbours_start == 0 or num_neighbours_end == 0:
dead_ends.append(line)
return dead_ends
def _filter_short_dead_ends(self, multilinestring, dead_ends):
lines = list(multilinestring.geoms)
for i, line in enumerate(multilinestring.geoms):
if line in dead_ends and line.length < self.threshold:
lines.remove(line)
lines = linemerge(lines)
if lines.is_empty:
lines = None
else:
lines = self._ensure_multilinestring(lines)
return lines
def _repair_splitted_ends(self, polygon, multilinestring, dead_ends):
lines = list(multilinestring.geoms)
for i, dead_end in enumerate(dead_ends):
coords = dead_end.coords
for j in range(i + 1, len(dead_ends)):
common_point = set([coords[0], coords[-1]]).intersection(dead_ends[j].coords)
if len(common_point) > 0:
# prepare all lines to point to the common point
dead_point1 = coords[0]
if dead_point1 in common_point:
dead_point1 = coords[-1]
dead_point2 = dead_ends[j].coords[0]
if dead_point2 in common_point:
dead_point2 = dead_ends[j].coords[-1]
end_line = LineString([dead_point1, dead_point2])
if polygon.covers(end_line):
dead_end_center_point = end_line.centroid
else:
continue
lines.append(LineString([dead_end_center_point, list(common_point)[0]]))
if dead_end in lines:
lines.remove(dead_end)
if dead_ends[j] in lines:
lines.remove(dead_ends[j])
continue
return self._ensure_multilinestring(linemerge(lines))
def _close_gaps(self, lines, cut_lines):
snaped_lines = []
lines = MultiLineString(lines)
for i, line in enumerate(lines.geoms):
# for each cutline check if a the line starts or ends close to it
# if so extend the line at the start/end for the distance of the nearest point and snap it to that other line
# we do not want to snap it to the rest of the lines directly, this could push the connection point into a unwanted direction
coords = list(line.coords)
start = Point(coords[0])
end = Point(coords[-1])
l_l = lines.difference(line)
for cut_line in cut_lines:
distance = start.distance(l_l)
if cut_line.distance(start) < 0.6:
distance = start.distance(l_l)
new_start_point = self._extend_line(line.coords[0], line.coords[1], distance)
coords[0] = nearest_points(Point(list(new_start_point)), l_l)[1]
if cut_line.distance(end) < 0.6:
distance = end.distance(l_l)
new_end_point = self._extend_line(line.coords[-1], line.coords[-2], distance)
coords[-1] = nearest_points(Point(list(new_end_point)), l_l)[1]
snaped_lines.append(LineString(coords))
return snaped_lines
def _extend_line(self, p1, p2, distance):
start_point = InkstitchPoint.from_tuple(p1)
end_point = InkstitchPoint.from_tuple(p2)
direction = (end_point - start_point).unit()
new_point = start_point - direction * distance
return new_point
def _ensure_multilinestring(self, lines):
if not isinstance(lines, MultiLineString):
lines = MultiLineString([lines])
return lines
def _insert_elements(self, lines, parent, index, transform, style):
for line in lines:
d = "M "
for coord in line.coords:
d += "%s,%s " % (coord[0], coord[1])
centerline_element = PathElement(d=d, style=style, transform=str(transform))
parent.insert(index, centerline_element)
|