1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
# Authors: see git history
#
# Copyright (c) 2024 Authors
# Licensed under the GNU GPL version 3.0 or later. See the file LICENSE for details.
import networkx as nx
from inkex import Group, Path, PathElement, errormsg
from shapely import length, unary_union
from shapely.geometry import LineString, MultiLineString, Point
from shapely.ops import linemerge, nearest_points, substring
from ..elements import Stroke
from ..i18n import _
from ..svg import PIXELS_PER_MM, get_correction_transform
from ..utils.geometry import ensure_multi_line_string
from .base import InkstitchExtension
class Redwork(InkstitchExtension):
"""Takes a bunch of stroke elements and traverses them so,
that every stroke has exactly two passes
"""
def __init__(self, *args, **kwargs):
InkstitchExtension.__init__(self, *args, **kwargs)
self.arg_parser.add_argument("--notebook")
self.arg_parser.add_argument("-m", "--merge_distance", dest="merge_distance", type=float, default=0.5)
self.arg_parser.add_argument("-p", "--minimum_path_length", dest="minimum_path_length", type=float, default=0.5)
self.arg_parser.add_argument("-s", "--redwork_running_stitch_length_mm", dest="redwork_running_stitch_length_mm", type=float, default=2.5)
self.arg_parser.add_argument("-b", "--redwork_bean_stitch_repeats", dest="redwork_bean_stitch_repeats", type=str, default='0')
self.elements = None
self.graph = None
self.connected_components = None
self.merge_distance = None
self.minimum_path_length = None
def effect(self):
if not self.get_elements():
return
elements = [element for element in self.elements if isinstance(element, Stroke)]
if not elements:
errormsg(_("Please select one or more strokes."))
return
self.merge_distance = self.options.merge_distance * PIXELS_PER_MM
self.minimum_path_length = self.options.minimum_path_length * PIXELS_PER_MM
starting_point = self._get_starting_point('run_start')
# as the resulting path starts and ends at same place we can also use ending point
if not starting_point:
starting_point = self._get_starting_point('run_end')
multi_line_string = self._elements_to_multi_line_string(elements)
if starting_point:
multi_line_string = self._ensure_starting_point(multi_line_string, starting_point)
self._build_graph(multi_line_string)
self._generate_strongly_connected_components()
self._generate_eulerian_circuits()
self._eulerian_circuits_to_elements(elements)
def _ensure_starting_point(self, multi_line_string, starting_point):
# returns a MultiLineString whose first LineString starts close to starting_point
starting_point = Point(*starting_point)
new_lines = []
start_applied = False
for line in multi_line_string.geoms:
if line.distance(starting_point) < 2 and not start_applied:
project = line.project(starting_point, True)
new_lines.append(substring(line, 0, project, True))
new_lines = [substring(line, project, 1, True)] + new_lines
start_applied = True
else:
new_lines.append(line)
return MultiLineString(new_lines)
def _get_starting_point(self, command_type):
command = None
for stroke in self.elements:
command = stroke.get_command(command_type)
if command:
# remove command symbol
command_group = command.connector.getparent()
command_group.getparent().remove(command_group)
# return the first occurence directly
return command.target_point
def _eulerian_circuits_to_elements(self, elements):
node = elements[0].node
index = node.getparent().index(node)
style = node.style
transform = get_correction_transform(node)
nb_circuits = len(self.eulerian_circuit)
# create redwork group
redwork_group = Group()
redwork_group.label = _("Redwork Group")
node.getparent().insert(index, redwork_group)
# insert lines grouped by underpath and top layer
visited_lines = []
i = 1
for circuit in self.eulerian_circuit:
connected_group = Group()
connected_group.label = _("Connected Group")
for edge in circuit:
linestring = self.graph.get_edge_data(edge[0], edge[1], edge[2])['path']
if length(linestring) > self.minimum_path_length:
current_line = linestring
if current_line in visited_lines:
path_id = self.svg.get_unique_id('redwork_')
label = _("Redwork") + f' {i}'
redwork = True
else:
path_id = self.svg.get_unique_id('underpath_')
label = _("Redwork Underpath") + f' {i}'
visited_lines.append(current_line.reverse())
redwork = False
path = str(Path(list(current_line.coords)))
if nb_circuits > 1:
redwork_group.insert(i, connected_group)
self._insert_element(path, connected_group, style, transform, label, path_id, redwork)
else:
self._insert_element(path, redwork_group, style, transform, label, path_id, redwork)
i += 1
# remove input elements
for element in elements:
element.node.getparent().remove(element.node)
def _insert_element(self, path, group, style, transform, label, path_id, redwork=True):
element = PathElement(
id=path_id,
style=str(style),
transform=transform,
d=path
)
element.label = label
element.set('inkstitch:running_stitch_length_mm', self.options.redwork_running_stitch_length_mm)
if redwork:
element.set('inkstitch:bean_stitch_repeats', self.options.redwork_bean_stitch_repeats)
element.style['stroke-dasharray'] = 'none'
else:
element.style['stroke-dasharray'] = '2 1.1'
group.add(element)
def _build_graph(self, multi_line_string):
self.graph = nx.MultiDiGraph()
for geom in multi_line_string.geoms:
start = geom.coords[0]
end = geom.coords[-1]
self.graph.add_edge(str(start), str(end), path=geom)
geom = geom.reverse()
self.graph.add_edge(str(end), str(start), path=geom)
def _generate_strongly_connected_components(self):
self.connected_components = list(nx.strongly_connected_components(self.graph))
for i, cc in enumerate(self.connected_components):
if list(self.graph.nodes)[0] in cc:
break
ordered_connected_components = [self.connected_components[i]] + self.connected_components[:i] + self.connected_components[i+1:]
self.connected_components = ordered_connected_components
def _generate_eulerian_circuits(self):
G = self.graph.subgraph(self.connected_components[0]).copy()
self.eulerian_circuit = [nx.eulerian_circuit(G, list(self.graph.nodes)[0], keys=True)]
for c in self.connected_components[1:]:
G = self.graph.subgraph(c).copy()
self.eulerian_circuit.append(nx.eulerian_circuit(G, keys=True))
def _elements_to_multi_line_string(self, elements):
lines = []
for element in elements:
for geom in element.as_multi_line_string().geoms:
lines.append(geom)
multi_line_string = self._add_connectors(lines)
multi_line_string = ensure_multi_line_string(unary_union(linemerge(multi_line_string), grid_size=0.001))
return multi_line_string
def _add_connectors(self, lines):
connectors = []
for i, line1 in enumerate(lines):
for j in range(i + 1, len(lines)):
line2 = lines[j]
try:
distance = line1.distance(line2)
except FloatingPointError:
continue
if 0 < distance < self.merge_distance:
# add nearest points
near = nearest_points(line1, line2)
connectors.append(LineString([near[0], near[1]]))
return MultiLineString(lines + connectors)
|