1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
|
from shapely.geometry.polygon import LineString, LinearRing
from shapely.geometry import Point, MultiPoint, linestring
from shapely.ops import nearest_points, polygonize
from collections import namedtuple
from depq import DEPQ
import math
from ..stitches import LineStringSampling
from ..stitches import PointTransfer
from ..stitches import constants
nearest_neighbor_tuple = namedtuple('nearest_neighbor_tuple', ['nearest_point_parent', 'nearest_point_child', 'projected_distance_parent', 'child_node'])
# Cuts a closed line so that the new closed line starts at the point with "distance" to the beginning of the old line.
def cut(line, distance):
if distance <= 0.0 or distance >= line.length:
return [LineString(line)]
coords = list(line.coords)
for i, p in enumerate(coords):
if i > 0 and p == coords[0]:
pd = line.length
else:
pd = line.project(Point(p))
if pd == distance:
if coords[0] == coords[-1]:
return LineString(coords[i:]+coords[1:i+1])
else:
return LineString(coords[i:]+coords[:i])
if pd > distance:
cp = line.interpolate(distance)
if coords[0] == coords[-1]:
return LineString([(cp.x, cp.y)] + coords[i:]+coords[1:i]+[(cp.x, cp.y)])
else:
return LineString([(cp.x, cp.y)] + coords[i:]+coords[:i])
#Takes the offsetted curves organized as tree, connects and samples them.
#Strategy: A connection from parent to child is made where both curves come closest together.
#Input:
#-tree: contains the offsetted curves in a hierachical organized data structure.
#-used_offset: used offset when the offsetted curves were generated
#-stitch_distance: maximum allowed distance between two points after sampling
#-close_point: defines the beginning point for stitching (stitching starts always from the undisplaced curve)
#-offset_by_half: If true the resulting points are interlaced otherwise not.
#Returnvalues:
#-All offsetted curves connected to one line and sampled with points obeying stitch_distance and offset_by_half
#-Tag (origin) of each point to analyze why a point was placed at this position
def connect_raster_tree_nearest_neighbor(tree, used_offset, stitch_distance, close_point, offset_by_half):
current_coords = tree.val
abs_offset = abs(used_offset)
result_coords = []
result_coords_origin = []
# We cut the current item so that its index 0 is closest to close_point
start_distance = tree.val.project(close_point)
if start_distance > 0:
current_coords = cut(current_coords, start_distance)
tree.val = current_coords
if not tree.transferred_point_priority_deque.is_empty():
new_DEPQ = DEPQ(iterable=None, maxlen=None)
for item,priority in tree.transferred_point_priority_deque:
new_DEPQ.insert(item, math.fmod(
priority-start_distance+current_coords.length, current_coords.length))
tree.transferred_point_priority_deque = new_DEPQ
#print("Gecutted")
stitching_direction = 1
# This list should contain a tuple of nearest points between the current geometry
# and the subgeometry, the projected distance along the current geometry,
# and the belonging subtree node
nearest_points_list = []
for subnode in tree.children:
point_parent, point_child = nearest_points(current_coords, subnode.val)
proj_distance = current_coords.project(point_parent)
nearest_points_list.append(nearest_neighbor_tuple(nearest_point_parent = point_parent,
nearest_point_child = point_child,
projected_distance_parent = proj_distance,
child_node=subnode))
nearest_points_list.sort(reverse=False, key=lambda tup: tup.projected_distance_parent)
if nearest_points_list:
start_distance = min(abs_offset*constants.factor_offset_starting_points, nearest_points_list[0].projected_distance_parent)
end_distance = max(current_coords.length-abs_offset*constants.factor_offset_starting_points, nearest_points_list[-1].projected_distance_parent)
else:
start_distance = abs_offset*constants.factor_offset_starting_points
end_distance = current_coords.length-abs_offset*constants.factor_offset_starting_points
own_coords, own_coords_origin = LineStringSampling.raster_line_string_with_priority_points(current_coords, start_distance, # We add/subtract an offset to not sample the same point again (avoid double points for start and end)
end_distance, stitch_distance, stitching_direction, tree.transferred_point_priority_deque, abs_offset)
assert(len(own_coords) == len(own_coords_origin))
own_coords_origin[0] = LineStringSampling.PointSource.ENTER_LEAVING_POINT
own_coords_origin[-1] = LineStringSampling.PointSource.ENTER_LEAVING_POINT
#tree.val = LineString(own_coords)
#tree.pointsourcelist = own_coords_origin
tree.stitching_direction = stitching_direction
tree.already_rastered = True
#Next we need to transfer our rastered points to siblings and childs
to_transfer_point_list = []
to_transfer_point_list_origin = []
for k in range(1, len(own_coords)-1): #Do not take the first and the last since they are ENTER_LEAVING_POINT points for sure
# if abs(temp[k][0]-5.25) < 0.5 and abs(temp[k][1]-42.9) < 0.5:
# print("HIER gefunden!")
if (not offset_by_half and own_coords_origin[k] == LineStringSampling.PointSource.EDGE_NEEDED):
continue
if own_coords_origin[k] == LineStringSampling.PointSource.ENTER_LEAVING_POINT or own_coords_origin[k] == LineStringSampling.PointSource.FORBIDDEN_POINT:
continue
to_transfer_point_list.append(Point(own_coords[k]))
point_origin = own_coords_origin[k]
to_transfer_point_list_origin.append(point_origin)
#since the projection is only in ccw direction towards inner we need to use "-used_offset" for stitching_direction==-1
PointTransfer.transfer_points_to_surrounding(tree,stitching_direction*used_offset,offset_by_half,stitch_distance,
to_transfer_point_list,to_transfer_point_list_origin,overnext_neighbor=False,
transfer_forbidden_points=False,transfer_to_parent=False,transfer_to_sibling=True,transfer_to_child=True)
#We transfer also to the overnext child to get a more straight arrangement of points perpendicular to the stitching lines
if offset_by_half:
PointTransfer.transfer_points_to_surrounding(tree,stitching_direction*used_offset,False,stitch_distance,
to_transfer_point_list,to_transfer_point_list_origin,overnext_neighbor=True,
transfer_forbidden_points=False,transfer_to_parent=False,transfer_to_sibling=True,transfer_to_child=True)
if not nearest_points_list:
#If there is no child (inner geometry) we can simply take our own rastered coords as result
result_coords = own_coords
result_coords_origin = own_coords_origin
else:
#There are childs so we need to merge their coordinates with our own rastered coords
#To create a closed ring
own_coords.append(own_coords[0])
own_coords_origin.append(own_coords_origin[0])
#own_coords does not start with current_coords but has an offset (see call of raster_line_string_with_priority_points)
total_distance = start_distance
current_item_index = 0
result_coords = [own_coords[0]]
result_coords_origin = [LineStringSampling.PointSource.ENTER_LEAVING_POINT]
for i in range(1, len(own_coords)):
next_distance = math.sqrt((own_coords[i][0]-own_coords[i-1][0])**2 +
(own_coords[i][1]-own_coords[i-1][1])**2)
while (current_item_index < len(nearest_points_list) and
total_distance+next_distance+constants.eps > nearest_points_list[current_item_index].projected_distance_parent):
item = nearest_points_list[current_item_index]
child_coords, child_coords_origin = connect_raster_tree_nearest_neighbor(
item.child_node, used_offset, stitch_distance, item.nearest_point_child, offset_by_half)
delta = item.nearest_point_parent.distance(Point(own_coords[i-1]))
if delta > abs_offset*constants.factor_offset_starting_points:
result_coords.append(item.nearest_point_parent.coords[0])
result_coords_origin.append(LineStringSampling.PointSource.ENTER_LEAVING_POINT)
# reversing avoids crossing when entering and leaving the child segment
result_coords.extend(child_coords[::-1])
result_coords_origin.extend(child_coords_origin[::-1])
#And here we calculate the point for the leaving
delta = item.nearest_point_parent.distance(Point(own_coords[i]))
if current_item_index < len(nearest_points_list)-1:
delta = min(delta, abs(
nearest_points_list[current_item_index+1].projected_distance_parent-item.projected_distance_parent))
if delta > abs_offset*constants.factor_offset_starting_points:
result_coords.append(current_coords.interpolate(
item.projected_distance_parent+abs_offset*constants.factor_offset_starting_points).coords[0])
result_coords_origin.append(LineStringSampling.PointSource.ENTER_LEAVING_POINT)
current_item_index += 1
if i < len(own_coords)-1:
if(Point(result_coords[-1]).distance(Point(own_coords[i])) > abs_offset*constants.factor_offset_remove_points):
result_coords.append(own_coords[i])
result_coords_origin.append(own_coords_origin[i])
# Since current_coords and temp are rastered differently there accumulate errors regarding the current distance.
# Since a projection of each point in temp would be very time consuming we project only every n-th point which resets the accumulated error every n-th point.
if i % 20 == 0:
total_distance = current_coords.project(Point(own_coords[i]))
else:
total_distance += next_distance
assert(len(result_coords) == len(result_coords_origin))
return result_coords, result_coords_origin
#Takes a line and calculates the nearest distance along this line to enter the next_line
#Input:
#-travel_line: The "parent" line for which the distance should be minimized to enter next_line
#-next_line: contains the next_line which need to be entered
#-thresh: The distance between travel_line and next_line needs to below thresh to be a valid point for entering
#Output:
#-tuple - the tuple structure is: (nearest point in travel_line, nearest point in next_line)
def get_nearest_points_closer_than_thresh(travel_line, next_line,thresh):
point_list = list(MultiPoint(travel_line.coords))
if point_list[0].distance(next_line) < thresh:
return nearest_points(point_list[0], next_line)
for i in range(len(point_list)-1):
line_segment = LineString([point_list[i], point_list[i+1]])
result = nearest_points(line_segment,next_line)
if result[0].distance(result[1])< thresh:
return result
line_segment = LineString([point_list[-1], point_list[0]])
result = nearest_points(line_segment,next_line)
if result[0].distance(result[1])< thresh:
return result
else:
return None
#Takes a line and calculates the nearest distance along this line to enter the childs in children_list
#The method calculates the distances along the line and along the reversed line to find the best direction
#which minimizes the overall distance for all childs.
#Input:
#-travel_line: The "parent" line for which the distance should be minimized to enter the childs
#-children_list: contains the childs of travel_line which need to be entered
#-threshold: The distance between travel_line and a child needs to below threshold to be a valid point for entering
#-preferred_direction: Put a bias on the desired travel direction along travel_line. If equals zero no bias is applied.
# preferred_direction=1 means we prefer the direction of travel_line; preferred_direction=-1 means we prefer the opposite direction.
#Output:
#-stitching direction for travel_line
#-list of tuples (one tuple per child). The tuple structure is: ((nearest point in travel_line, nearest point in child), distance along travel_line, belonging child)
def create_nearest_points_list(travel_line, children_list, threshold, threshold_hard,preferred_direction=0):
result_list_in_order = []
result_list_reversed_order = []
travel_line_reversed = LinearRing(travel_line.coords[::-1])
weight_in_order = 0
weight_reversed_order = 0
for child in children_list:
result = get_nearest_points_closer_than_thresh(travel_line, child.val, threshold)
if result == None: #where holes meet outer borders a distance up to 2*used offset can arise
result = get_nearest_points_closer_than_thresh(travel_line, child.val, threshold_hard)
assert(result != None)
proj = travel_line.project(result[0])
weight_in_order += proj
result_list_in_order.append(nearest_neighbor_tuple(nearest_point_parent = result[0],
nearest_point_child = result[1],
projected_distance_parent = proj,
child_node = child))
result = get_nearest_points_closer_than_thresh(travel_line_reversed, child.val, threshold)
if result == None: #where holes meet outer borders a distance up to 2*used offset can arise
result = get_nearest_points_closer_than_thresh(travel_line_reversed, child.val, threshold_hard)
assert(result != None)
proj = travel_line_reversed.project(result[0])
weight_reversed_order += proj
result_list_reversed_order.append(nearest_neighbor_tuple(nearest_point_parent = result[0],
nearest_point_child = result[1],
projected_distance_parent = proj,
child_node = child))
if preferred_direction == 1:
weight_in_order=min(weight_in_order/2, max(0, weight_in_order-10*threshold))
if weight_in_order == weight_reversed_order:
return (1, result_list_in_order)
elif preferred_direction == -1:
weight_reversed_order=min(weight_reversed_order/2, max(0, weight_reversed_order-10*threshold))
if weight_in_order == weight_reversed_order:
return (-1, result_list_reversed_order)
if weight_in_order < weight_reversed_order:
return (1, result_list_in_order)
else:
return (-1, result_list_reversed_order)
def calculate_replacing_middle_point(line_segment, abs_offset,max_stich_distance):
angles = LineStringSampling.calculate_line_angles(line_segment)
if angles[1] < abs_offset*constants.limiting_angle_straight:
if line_segment.length < max_stich_distance:
return None
else:
return line_segment.interpolate(line_segment.length-max_stich_distance).coords[0]
else:
return line_segment.coords[1]
#Takes the offsetted curves organized as tree, connects and samples them.
#Strategy: A connection from parent to child is made as fast as possible to reach the innermost child as fast as possible in order
# to stich afterwards from inner to outer.
#Input:
#-tree: contains the offsetted curves in a hierachical organized data structure.
#-used_offset: used offset when the offsetted curves were generated
#-stitch_distance: maximum allowed distance between two points after sampling
#-close_point: defines the beginning point for stitching (stitching starts always from the undisplaced curve)
#-offset_by_half: If true the resulting points are interlaced otherwise not.
#Returnvalues:
#-All offsetted curves connected to one line and sampled with points obeying stitch_distance and offset_by_half
#-Tag (origin) of each point to analyze why a point was placed at this position
def connect_raster_tree_from_inner_to_outer(tree, used_offset, stitch_distance, close_point, offset_by_half):
current_coords = tree.val
abs_offset = abs(used_offset)
result_coords = []
result_coords_origin = []
start_distance = tree.val.project(close_point)
# We cut the current path so that its index 0 is closest to close_point
if start_distance > 0:
current_coords = cut(current_coords, start_distance)
tree.val = current_coords
if not tree.transferred_point_priority_deque.is_empty():
new_DEPQ = DEPQ(iterable=None, maxlen=None)
for item, priority in tree.transferred_point_priority_deque:
new_DEPQ.insert(item, math.fmod(
priority-start_distance+current_coords.length, current_coords.length))
tree.transferred_point_priority_deque = new_DEPQ
#We try to use always the opposite stitching direction with respect to the parent to avoid crossings when entering and leaving the child
parent_stitching_direction = -1
if tree.parent != None:
parent_stitching_direction = tree.parent.stitching_direction
#find the nearest point in current_coords and its children and sort it along the stitching direction
stitching_direction, nearest_points_list = create_nearest_points_list(current_coords, tree.children, 1.5*abs_offset,2.05*abs_offset,parent_stitching_direction)
nearest_points_list.sort(reverse=False, key=lambda tup: tup.projected_distance_parent)
#Have a small offset for the starting and ending to avoid double points at start and end point (since the paths are closed rings)
if nearest_points_list:
start_offset = min(abs_offset*constants.factor_offset_starting_points, nearest_points_list[0].projected_distance_parent)
end_offset = max(current_coords.length-abs_offset*constants.factor_offset_starting_points, nearest_points_list[-1].projected_distance_parent)
else:
start_offset = abs_offset*constants.factor_offset_starting_points
end_offset = current_coords.length-abs_offset*constants.factor_offset_starting_points
if stitching_direction == 1:
own_coords, own_coords_origin = LineStringSampling.raster_line_string_with_priority_points(current_coords, start_offset, # We add start_offset to not sample the same point again (avoid double points for start and end)
end_offset, stitch_distance, stitching_direction, tree.transferred_point_priority_deque, abs_offset)
else:
own_coords, own_coords_origin = LineStringSampling.raster_line_string_with_priority_points(current_coords, current_coords.length-start_offset, # We subtract start_offset to not sample the same point again (avoid double points for start and end)
current_coords.length-end_offset, stitch_distance, stitching_direction, tree.transferred_point_priority_deque, abs_offset)
current_coords.coords = current_coords.coords[::-1]
#Adjust the points origin for start and end (so that they might not be transferred to childs)
#if own_coords_origin[-1] != LineStringSampling.PointSource.HARD_EDGE:
# own_coords_origin[-1] = LineStringSampling.PointSource.ENTER_LEAVING_POINT
#if own_coords_origin[0] != LineStringSampling.PointSource.HARD_EDGE:
# own_coords_origin[0] = LineStringSampling.PointSource.ENTER_LEAVING_POINT
assert(len(own_coords) == len(own_coords_origin))
#tree.val = LineString(own_coords)
#tree.pointsourcelist = own_coords_origin
tree.stitching_direction = stitching_direction
tree.already_rastered = True
to_transfer_point_list = []
to_transfer_point_list_origin = []
for k in range(0, len(own_coords)): #TODO: maybe do not take the first and the last since they are ENTER_LEAVING_POINT points for sure
if (not offset_by_half and own_coords_origin[k] == LineStringSampling.PointSource.EDGE_NEEDED or own_coords_origin[k] == LineStringSampling.PointSource.FORBIDDEN_POINT):
continue
if own_coords_origin[k] == LineStringSampling.PointSource.ENTER_LEAVING_POINT:
continue
to_transfer_point_list.append(Point(own_coords[k]))
to_transfer_point_list_origin.append(own_coords_origin[k])
assert(len(to_transfer_point_list) == len(to_transfer_point_list_origin))
#Next we need to transfer our rastered points to siblings and childs
#since the projection is only in ccw direction towards inner we need to use "-used_offset" for stitching_direction==-1
PointTransfer.transfer_points_to_surrounding(tree,stitching_direction*used_offset,offset_by_half,stitch_distance,
to_transfer_point_list,to_transfer_point_list_origin,overnext_neighbor=False,
transfer_forbidden_points=False,transfer_to_parent=False,transfer_to_sibling=True,transfer_to_child=True)
#We transfer also to the overnext child to get a more straight arrangement of points perpendicular to the stitching lines
if offset_by_half:
PointTransfer.transfer_points_to_surrounding(tree,stitching_direction*used_offset,False,stitch_distance,
to_transfer_point_list,to_transfer_point_list_origin,overnext_neighbor=True,
transfer_forbidden_points=False,transfer_to_parent=False,transfer_to_sibling=True,transfer_to_child=True)
if not nearest_points_list:
#If there is no child (inner geometry) we can simply take our own rastered coords as result
result_coords = own_coords
result_coords_origin = own_coords_origin
else:
#There are childs so we need to merge their coordinates with our own rastered coords
#Create a closed ring for the following code
own_coords.append(own_coords[0])
own_coords_origin.append(own_coords_origin[0])
# own_coords does not start with current_coords but has an offset (see call of raster_line_string_with_priority_points)
total_distance = start_offset
current_item_index = 0
result_coords = [own_coords[0]]
result_coords_origin = [own_coords_origin[0]]
for i in range(1, len(own_coords)):
next_distance = math.sqrt((own_coords[i][0]-own_coords[i-1][0])**2 +
(own_coords[i][1]-own_coords[i-1][1])**2)
while (current_item_index < len(nearest_points_list) and
total_distance+next_distance+constants.eps > nearest_points_list[current_item_index].projected_distance_parent):
#The current and the next point in own_coords enclose the nearest point tuple between this geometry and the child geometry.
#Hence we need to insert the child geometry points here before the next point of own_coords.
item = nearest_points_list[current_item_index]
child_coords, child_coords_origin = connect_raster_tree_from_inner_to_outer(
item.child_node, used_offset, stitch_distance, item.nearest_point_child, offset_by_half)
#Imagine the nearest point of the child is within a long segment of the parent. Without additonal points
#on the parent side this would cause noticeable deviations. Hence we add here points shortly before and after
#the entering of the child to have only minor deviations to the desired shape.
#Here is the point for the entering:
if(Point(result_coords[-1]).distance(item.nearest_point_parent) > constants.factor_offset_starting_points*abs_offset):
result_coords.append(item.nearest_point_parent.coords[0])
result_coords_origin.append(LineStringSampling.PointSource.ENTER_LEAVING_POINT)
#if (abs(result_coords[-1][0]-61.7) < 0.2 and abs(result_coords[-1][1]-105.1) < 0.2):
# print("HIIER FOUNDED3")
#Check whether the number of points of the connecting lines from child to child can be reduced
if len(child_coords) > 1:
point = calculate_replacing_middle_point(LineString([result_coords[-1],child_coords[0],child_coords[1]]),abs_offset,stitch_distance)
#if (abs(result_coords[-1][0]-8.9) < 0.2 and abs(result_coords[-1][1]-8.9) < 0.2):
# print("HIIER FOUNDED3")
if point != None:
#if (abs(point[0]-17.8) < 0.2 and abs(point[1]-17.8) < 0.2):
# print("HIIER FOUNDED3")
result_coords.append(point)
result_coords_origin.append(child_coords_origin[0])
result_coords.extend(child_coords[1:])
result_coords_origin.extend(child_coords_origin[1:])
else:
result_coords.extend(child_coords)
result_coords_origin.extend(child_coords_origin)
#And here is the point for the leaving of the child (distance to the own following point should not be too large)
delta = item.nearest_point_parent.distance(Point(own_coords[i]))
if current_item_index < len(nearest_points_list)-1:
delta = min(delta, abs(
nearest_points_list[current_item_index+1].projected_distance_parent-item.projected_distance_parent))
if delta > constants.factor_offset_starting_points*abs_offset:
result_coords.append(current_coords.interpolate(
item.projected_distance_parent+2*constants.factor_offset_starting_points*abs_offset).coords[0])
result_coords_origin.append(LineStringSampling.PointSource.ENTER_LEAVING_POINT)
#check whether this additional point makes the last point of the child unnecessary
point = calculate_replacing_middle_point(LineString([result_coords[-3],result_coords[-2],result_coords[-1]]),abs_offset,stitch_distance)
if point == None:
result_coords.pop(-2)
result_coords_origin.pop(-2)
#if (abs(result_coords[-1][0]-61.7) < 0.2 and abs(result_coords[-1][1]-105.1) < 0.2):
# print("HIIER FOUNDED3")
current_item_index += 1
if i < len(own_coords)-1:
if(Point(result_coords[-1]).distance(Point(own_coords[i])) > abs_offset*constants.factor_offset_remove_points):
result_coords.append(own_coords[i])
result_coords_origin.append(own_coords_origin[i])
# Since current_coords and own_coords are rastered differently there accumulate errors regarding the current distance.
# Since a projection of each point in own_coords would be very time consuming we project only every n-th point which resets the accumulated error every n-th point.
if i % 20 == 0:
total_distance = current_coords.project(Point(own_coords[i]))
else:
total_distance += next_distance
assert(len(result_coords) == len(result_coords_origin))
return result_coords, result_coords_origin
|