1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
|
from shapely.geometry.polygon import LineString, LinearRing
from shapely.geometry import Point, MultiPoint
from shapely.ops import nearest_points
from collections import namedtuple
from depq import DEPQ
import trimesh
import numpy as np
from scipy import spatial
import math
from anytree import PreOrderIter
from ..stitches import LineStringSampling
from ..stitches import PointTransfer
from ..stitches import constants
nearest_neighbor_tuple = namedtuple(
"nearest_neighbor_tuple",
[
"nearest_point_parent",
"nearest_point_child",
"proj_distance_parent",
"child_node",
],
)
def cut(line, distance):
"""
Cuts a closed line so that the new closed line starts at the
point with "distance" to the beginning of the old line.
"""
if distance <= 0.0 or distance >= line.length:
return [LineString(line)]
coords = list(line.coords)
for i, p in enumerate(coords):
if i > 0 and p == coords[0]:
pd = line.length
else:
pd = line.project(Point(p))
if pd == distance:
if coords[0] == coords[-1]:
return LineString(coords[i:] + coords[1: i + 1])
else:
return LineString(coords[i:] + coords[:i])
if pd > distance:
cp = line.interpolate(distance)
if coords[0] == coords[-1]:
return LineString(
[(cp.x, cp.y)] + coords[i:] + coords[1:i] + [(cp.x, cp.y)]
)
else:
return LineString([(cp.x, cp.y)] + coords[i:] + coords[:i])
def connect_raster_tree_nearest_neighbor( # noqa: C901
tree, used_offset, stitch_distance, close_point, offset_by_half):
"""
Takes the offsetted curves organized as tree, connects and samples them.
Strategy: A connection from parent to child is made where both curves
come closest together.
Input:
-tree: contains the offsetted curves in a hierachical organized
data structure.
-used_offset: used offset when the offsetted curves were generated
-stitch_distance: maximum allowed distance between two points
after sampling
-close_point: defines the beginning point for stitching
(stitching starts always from the undisplaced curve)
-offset_by_half: If true the resulting points are interlaced otherwise not.
Returnvalues:
-All offsetted curves connected to one line and sampled with
points obeying stitch_distance and offset_by_half
-Tag (origin) of each point to analyze why a point was
placed at this position
"""
current_coords = tree.val
abs_offset = abs(used_offset)
result_coords = []
result_coords_origin = []
# We cut the current item so that its index 0 is closest to close_point
start_distance = tree.val.project(close_point)
if start_distance > 0:
current_coords = cut(current_coords, start_distance)
tree.val = current_coords
if not tree.transferred_point_priority_deque.is_empty():
new_DEPQ = DEPQ(iterable=None, maxlen=None)
for item, priority in tree.transferred_point_priority_deque:
new_DEPQ.insert(
item,
math.fmod(
priority - start_distance + current_coords.length,
current_coords.length,
),
)
tree.transferred_point_priority_deque = new_DEPQ
stitching_direction = 1
# This list should contain a tuple of nearest points between
# the current geometry and the subgeometry, the projected
# distance along the current geometry, and the belonging subtree node
nearest_points_list = []
for subnode in tree.children:
point_parent, point_child = nearest_points(current_coords, subnode.val)
proj_distance = current_coords.project(point_parent)
nearest_points_list.append(
nearest_neighbor_tuple(
nearest_point_parent=point_parent,
nearest_point_child=point_child,
proj_distance_parent=proj_distance,
child_node=subnode,
)
)
nearest_points_list.sort(
reverse=False, key=lambda tup: tup.proj_distance_parent)
if nearest_points_list:
start_distance = min(
abs_offset * constants.factor_offset_starting_points,
nearest_points_list[0].proj_distance_parent,
)
end_distance = max(
current_coords.length
- abs_offset * constants.factor_offset_starting_points,
nearest_points_list[-1].proj_distance_parent,
)
else:
start_distance = abs_offset * constants.factor_offset_starting_points
end_distance = (
current_coords.length - abs_offset * constants.factor_offset_starting_points
)
(
own_coords,
own_coords_origin,
) = LineStringSampling.raster_line_string_with_priority_points(
current_coords,
start_distance, # We add/subtract an offset to not sample
# the same point again (avoid double
# points for start and end)
end_distance,
stitch_distance,
tree.transferred_point_priority_deque,
abs_offset,
offset_by_half,
False
)
assert len(own_coords) == len(own_coords_origin)
own_coords_origin[0] = LineStringSampling.PointSource.ENTER_LEAVING_POINT
own_coords_origin[-1] = LineStringSampling.PointSource.ENTER_LEAVING_POINT
tree.stitching_direction = stitching_direction
tree.already_rastered = True
# Next we need to transfer our rastered points to siblings and childs
to_transfer_point_list = []
to_transfer_point_list_origin = []
for k in range(1, len(own_coords) - 1):
# Do not take the first and the last since they are ENTER_LEAVING_POINT
# points for sure
if (
not offset_by_half
and own_coords_origin[k] == LineStringSampling.PointSource.EDGE_NEEDED
):
continue
if (
own_coords_origin[k] == LineStringSampling.PointSource.ENTER_LEAVING_POINT
or own_coords_origin[k] == LineStringSampling.PointSource.FORBIDDEN_POINT
):
continue
to_transfer_point_list.append(Point(own_coords[k]))
point_origin = own_coords_origin[k]
to_transfer_point_list_origin.append(point_origin)
# Since the projection is only in ccw direction towards inner we need
# to use "-used_offset" for stitching_direction==-1
PointTransfer.transfer_points_to_surrounding(
tree,
stitching_direction * used_offset,
offset_by_half,
to_transfer_point_list,
to_transfer_point_list_origin,
overnext_neighbor=False,
transfer_forbidden_points=False,
transfer_to_parent=False,
transfer_to_sibling=True,
transfer_to_child=True,
)
# We transfer also to the overnext child to get a more straight
# arrangement of points perpendicular to the stitching lines
if offset_by_half:
PointTransfer.transfer_points_to_surrounding(
tree,
stitching_direction * used_offset,
False,
to_transfer_point_list,
to_transfer_point_list_origin,
overnext_neighbor=True,
transfer_forbidden_points=False,
transfer_to_parent=False,
transfer_to_sibling=True,
transfer_to_child=True,
)
if not nearest_points_list:
# If there is no child (inner geometry) we can simply take
# our own rastered coords as result
result_coords = own_coords
result_coords_origin = own_coords_origin
else:
# There are childs so we need to merge their coordinates +
# with our own rastered coords
# To create a closed ring
own_coords.append(own_coords[0])
own_coords_origin.append(own_coords_origin[0])
# own_coords does not start with current_coords but has an offset
# (see call of raster_line_string_with_priority_points)
total_distance = start_distance
cur_item = 0
result_coords = [own_coords[0]]
result_coords_origin = [
LineStringSampling.PointSource.ENTER_LEAVING_POINT]
for i in range(1, len(own_coords)):
next_distance = math.sqrt(
(own_coords[i][0] - own_coords[i - 1][0]) ** 2
+ (own_coords[i][1] - own_coords[i - 1][1]) ** 2
)
while (
cur_item < len(nearest_points_list)
and total_distance + next_distance + constants.eps
> nearest_points_list[cur_item].proj_distance_parent
):
item = nearest_points_list[cur_item]
(
child_coords,
child_coords_origin,
) = connect_raster_tree_nearest_neighbor(
item.child_node,
used_offset,
stitch_distance,
item.nearest_point_child,
offset_by_half,
)
d = item.nearest_point_parent.distance(
Point(own_coords[i - 1]))
if d > abs_offset * constants.factor_offset_starting_points:
result_coords.append(item.nearest_point_parent.coords[0])
result_coords_origin.append(
LineStringSampling.PointSource.ENTER_LEAVING_POINT
)
# reversing avoids crossing when entering and
# leaving the child segment
result_coords.extend(child_coords[::-1])
result_coords_origin.extend(child_coords_origin[::-1])
# And here we calculate the point for the leaving
d = item.nearest_point_parent.distance(Point(own_coords[i]))
if cur_item < len(nearest_points_list) - 1:
d = min(
d,
abs(
nearest_points_list[cur_item +
1].proj_distance_parent
- item.proj_distance_parent
),
)
if d > abs_offset * constants.factor_offset_starting_points:
result_coords.append(
current_coords.interpolate(
item.proj_distance_parent
+ abs_offset * constants.factor_offset_starting_points
).coords[0]
)
result_coords_origin.append(
LineStringSampling.PointSource.ENTER_LEAVING_POINT
)
cur_item += 1
if i < len(own_coords) - 1:
if (
Point(result_coords[-1]).distance(Point(own_coords[i]))
> abs_offset * constants.factor_offset_remove_points
):
result_coords.append(own_coords[i])
result_coords_origin.append(own_coords_origin[i])
# Since current_coords and temp are rastered differently
# there accumulate errors regarding the current distance.
# Since a projection of each point in temp would be very time
# consuming we project only every n-th point which resets
# the accumulated error every n-th point.
if i % 20 == 0:
total_distance = current_coords.project(Point(own_coords[i]))
else:
total_distance += next_distance
assert len(result_coords) == len(result_coords_origin)
return result_coords, result_coords_origin
def get_nearest_points_closer_than_thresh(travel_line, next_line, thresh):
"""
Takes a line and calculates the nearest distance along this
line to enter the next_line
Input:
-travel_line: The "parent" line for which the distance should
be minimized to enter next_line
-next_line: contains the next_line which need to be entered
-thresh: The distance between travel_line and next_line needs
to below thresh to be a valid point for entering
Output:
-tuple - the tuple structure is:
(nearest point in travel_line, nearest point in next_line)
"""
point_list = list(MultiPoint(travel_line.coords))
if point_list[0].distance(next_line) < thresh:
return nearest_points(point_list[0], next_line)
for i in range(len(point_list) - 1):
line_segment = LineString([point_list[i], point_list[i + 1]])
result = nearest_points(line_segment, next_line)
if result[0].distance(result[1]) < thresh:
return result
line_segment = LineString([point_list[-1], point_list[0]])
result = nearest_points(line_segment, next_line)
if result[0].distance(result[1]) < thresh:
return result
else:
return None
def create_nearest_points_list(
travel_line, children_list, threshold, threshold_hard, preferred_direction=0):
"""
Takes a line and calculates the nearest distance along this line to
enter the childs in children_list
The method calculates the distances along the line and along the
reversed line to find the best direction which minimizes the overall
distance for all childs.
Input:
-travel_line: The "parent" line for which the distance should
be minimized to enter the childs
-children_list: contains the childs of travel_line which need to be entered
-threshold: The distance between travel_line and a child needs to be
below threshold to be a valid point for entering
-preferred_direction: Put a bias on the desired travel direction along
travel_line. If equals zero no bias is applied.
preferred_direction=1 means we prefer the direction of travel_line;
preferred_direction=-1 means we prefer the opposite direction.
Output:
-stitching direction for travel_line
-list of tuples (one tuple per child). The tuple structure is:
((nearest point in travel_line, nearest point in child),
distance along travel_line, belonging child)
"""
result_list_in_order = []
result_list_reversed_order = []
travel_line_reversed = LinearRing(travel_line.coords[::-1])
weight_in_order = 0
weight_reversed_order = 0
for child in children_list:
result = get_nearest_points_closer_than_thresh(
travel_line, child.val, threshold
)
if result is None:
# where holes meet outer borders a distance
# up to 2*used offset can arise
result = get_nearest_points_closer_than_thresh(
travel_line, child.val, threshold_hard
)
assert result is not None
proj = travel_line.project(result[0])
weight_in_order += proj
result_list_in_order.append(
nearest_neighbor_tuple(
nearest_point_parent=result[0],
nearest_point_child=result[1],
proj_distance_parent=proj,
child_node=child,
)
)
result = get_nearest_points_closer_than_thresh(
travel_line_reversed, child.val, threshold
)
if result is None:
# where holes meet outer borders a distance
# up to 2*used offset can arise
result = get_nearest_points_closer_than_thresh(
travel_line_reversed, child.val, threshold_hard
)
assert result is not None
proj = travel_line_reversed.project(result[0])
weight_reversed_order += proj
result_list_reversed_order.append(
nearest_neighbor_tuple(
nearest_point_parent=result[0],
nearest_point_child=result[1],
proj_distance_parent=proj,
child_node=child,
)
)
if preferred_direction == 1:
# Reduce weight_in_order to make in order stitching more preferred
weight_in_order = min(
weight_in_order / 2, max(0, weight_in_order - 10 * threshold)
)
if weight_in_order == weight_reversed_order:
return (1, result_list_in_order)
elif preferred_direction == -1:
# Reduce weight_reversed_order to make reversed
# stitching more preferred
weight_reversed_order = min(
weight_reversed_order /
2, max(0, weight_reversed_order - 10 * threshold)
)
if weight_in_order == weight_reversed_order:
return (-1, result_list_reversed_order)
if weight_in_order < weight_reversed_order:
return (1, result_list_in_order)
else:
return (-1, result_list_reversed_order)
def calculate_replacing_middle_point(line_segment, abs_offset, max_stitch_distance):
"""
Takes a line segment (consisting of 3 points!)
and calculates a new middle point if the line_segment is
straight enough to be resampled by points max_stitch_distance apart FROM THE END OF line_segment.
Returns None if the middle point is not needed.
"""
angles = LineStringSampling.calculate_line_angles(line_segment)
if angles[1] < abs_offset * constants.limiting_angle_straight:
if line_segment.length < max_stitch_distance:
return None
else:
return line_segment.interpolate(
line_segment.length - max_stitch_distance
).coords[0]
else:
return line_segment.coords[1]
def connect_raster_tree_from_inner_to_outer(tree, used_offset, stitch_distance, close_point, offset_by_half): # noqa: C901
"""
Takes the offsetted curves organized as tree, connects and samples them.
Strategy: A connection from parent to child is made as fast as possible to
reach the innermost child as fast as possible in order to stitch afterwards
from inner to outer.
Input:
-tree: contains the offsetted curves in a hierachical organized
data structure.
-used_offset: used offset when the offsetted curves were generated
-stitch_distance: maximum allowed distance between two points
after sampling
-close_point: defines the beginning point for stitching
(stitching starts always from the undisplaced curve)
-offset_by_half: If true the resulting points are interlaced otherwise not.
Returnvalues:
-All offsetted curves connected to one line and sampled with points obeying
stitch_distance and offset_by_half
-Tag (origin) of each point to analyze why a point was placed
at this position
"""
current_coords = tree.val
abs_offset = abs(used_offset)
result_coords = []
result_coords_origin = []
start_distance = tree.val.project(close_point)
# We cut the current path so that its index 0 is closest to close_point
if start_distance > 0:
current_coords = cut(current_coords, start_distance)
tree.val = current_coords
if not tree.transferred_point_priority_deque.is_empty():
new_DEPQ = DEPQ(iterable=None, maxlen=None)
for item, priority in tree.transferred_point_priority_deque:
new_DEPQ.insert(
item,
math.fmod(
priority - start_distance + current_coords.length,
current_coords.length,
),
)
tree.transferred_point_priority_deque = new_DEPQ
# We try to use always the opposite stitching direction with respect to the
# parent to avoid crossings when entering and leaving the child
parent_stitching_direction = -1
if tree.parent is not None:
parent_stitching_direction = tree.parent.stitching_direction
# Find the nearest point in current_coords and its children and
# sort it along the stitching direction
stitching_direction, nearest_points_list = create_nearest_points_list(
current_coords,
tree.children,
1.5 * abs_offset,
2.05 * abs_offset,
parent_stitching_direction,
)
nearest_points_list.sort(
reverse=False, key=lambda tup: tup.proj_distance_parent)
# Have a small offset for the starting and ending to avoid double points
# at start and end point (since the paths are closed rings)
if nearest_points_list:
start_offset = min(
abs_offset * constants.factor_offset_starting_points,
nearest_points_list[0].proj_distance_parent,
)
end_offset = max(
current_coords.length
- abs_offset * constants.factor_offset_starting_points,
nearest_points_list[-1].proj_distance_parent,
)
else:
start_offset = abs_offset * constants.factor_offset_starting_points
end_offset = (
current_coords.length - abs_offset * constants.factor_offset_starting_points
)
if stitching_direction == 1:
(
own_coords,
own_coords_origin,
) = LineStringSampling.raster_line_string_with_priority_points(
current_coords,
start_offset, # We add start_offset to not sample the same
# point again (avoid double points for start
# and end)
end_offset,
stitch_distance,
tree.transferred_point_priority_deque,
abs_offset,
offset_by_half,
False
)
else:
(
own_coords,
own_coords_origin,
) = LineStringSampling.raster_line_string_with_priority_points(
current_coords,
current_coords.length - start_offset, # We subtract
# start_offset to not
# sample the same point
# again (avoid double
# points for start
# and end)
current_coords.length - end_offset,
stitch_distance,
tree.transferred_point_priority_deque,
abs_offset,
offset_by_half,
False
)
current_coords.coords = current_coords.coords[::-1]
assert len(own_coords) == len(own_coords_origin)
tree.stitching_direction = stitching_direction
tree.already_rastered = True
to_transfer_point_list = []
to_transfer_point_list_origin = []
for k in range(0, len(own_coords)):
# TODO: maybe do not take the first and the last
# since they are ENTER_LEAVING_POINT points for sure
if (
not offset_by_half
and own_coords_origin[k] == LineStringSampling.PointSource.EDGE_NEEDED
or own_coords_origin[k] == LineStringSampling.PointSource.FORBIDDEN_POINT
):
continue
if own_coords_origin[k] == LineStringSampling.PointSource.ENTER_LEAVING_POINT:
continue
to_transfer_point_list.append(Point(own_coords[k]))
to_transfer_point_list_origin.append(own_coords_origin[k])
assert len(to_transfer_point_list) == len(to_transfer_point_list_origin)
# Next we need to transfer our rastered points to siblings and childs
# Since the projection is only in ccw direction towards inner we
# need to use "-used_offset" for stitching_direction==-1
PointTransfer.transfer_points_to_surrounding(
tree,
stitching_direction * used_offset,
offset_by_half,
to_transfer_point_list,
to_transfer_point_list_origin,
overnext_neighbor=False,
transfer_forbidden_points=False,
transfer_to_parent=False,
transfer_to_sibling=True,
transfer_to_child=True,
)
# We transfer also to the overnext child to get a more straight
# arrangement of points perpendicular to the stitching lines
if offset_by_half:
PointTransfer.transfer_points_to_surrounding(
tree,
stitching_direction * used_offset,
False,
to_transfer_point_list,
to_transfer_point_list_origin,
overnext_neighbor=True,
transfer_forbidden_points=False,
transfer_to_parent=False,
transfer_to_sibling=True,
transfer_to_child=True,
)
if not nearest_points_list:
# If there is no child (inner geometry) we can simply
# take our own rastered coords as result
result_coords = own_coords
result_coords_origin = own_coords_origin
else:
# There are childs so we need to merge their coordinates
# with our own rastered coords
# Create a closed ring for the following code
own_coords.append(own_coords[0])
own_coords_origin.append(own_coords_origin[0])
# own_coords does not start with current_coords but has an offset
# (see call of raster_line_string_with_priority_points)
total_distance = start_offset
cur_item = 0
result_coords = [own_coords[0]]
result_coords_origin = [own_coords_origin[0]]
for i in range(1, len(own_coords)):
next_distance = math.sqrt(
(own_coords[i][0] - own_coords[i - 1][0]) ** 2
+ (own_coords[i][1] - own_coords[i - 1][1]) ** 2
)
while (
cur_item < len(nearest_points_list)
and total_distance + next_distance + constants.eps
> nearest_points_list[cur_item].proj_distance_parent
):
# The current and the next point in own_coords enclose the
# nearest point tuple between this geometry and child
# geometry. Hence we need to insert the child geometry points
# here before the next point of own_coords.
item = nearest_points_list[cur_item]
(
child_coords,
child_coords_origin,
) = connect_raster_tree_from_inner_to_outer(
item.child_node,
used_offset,
stitch_distance,
item.nearest_point_child,
offset_by_half,
)
# Imagine the nearest point of the child is within a long
# segment of the parent. Without additonal points
# on the parent side this would cause noticeable deviations.
# Hence we add here points shortly before and after
# the entering of the child to have only minor deviations to
# the desired shape.
# Here is the point for the entering:
if (
Point(result_coords[-1]
).distance(item.nearest_point_parent)
> constants.factor_offset_starting_points * abs_offset
):
result_coords.append(item.nearest_point_parent.coords[0])
result_coords_origin.append(
LineStringSampling.PointSource.ENTER_LEAVING_POINT
)
# Check whether the number of points of the connecting lines
# from child to child can be reduced
if len(child_coords) > 1:
point = calculate_replacing_middle_point(
LineString(
[result_coords[-1], child_coords[0], child_coords[1]]
),
abs_offset,
stitch_distance,
)
if point is not None:
result_coords.append(point)
result_coords_origin.append(child_coords_origin[0])
result_coords.extend(child_coords[1:])
result_coords_origin.extend(child_coords_origin[1:])
else:
result_coords.extend(child_coords)
result_coords_origin.extend(child_coords_origin)
# And here is the point for the leaving of the child
# (distance to the own following point should not be too large)
d = item.nearest_point_parent.distance(Point(own_coords[i]))
if cur_item < len(nearest_points_list) - 1:
d = min(
d,
abs(
nearest_points_list[cur_item +
1].proj_distance_parent
- item.proj_distance_parent
),
)
if d > constants.factor_offset_starting_points * abs_offset:
result_coords.append(
current_coords.interpolate(
item.proj_distance_parent
+ 2 * constants.factor_offset_starting_points * abs_offset
).coords[0]
)
result_coords_origin.append(
LineStringSampling.PointSource.ENTER_LEAVING_POINT
)
# Check whether this additional point makes the last point
# of the child unnecessary
point = calculate_replacing_middle_point(
LineString(
[result_coords[-3], result_coords[-2], result_coords[-1]]
),
abs_offset,
stitch_distance,
)
if point is None:
result_coords.pop(-2)
result_coords_origin.pop(-2)
cur_item += 1
if i < len(own_coords) - 1:
if (
Point(result_coords[-1]).distance(Point(own_coords[i]))
> abs_offset * constants.factor_offset_remove_points
):
result_coords.append(own_coords[i])
result_coords_origin.append(own_coords_origin[i])
# Since current_coords and own_coords are rastered differently
# there accumulate errors regarding the current distance.
# Since a projection of each point in own_coords would be very
# time consuming we project only every n-th point which resets
# the accumulated error every n-th point.
if i % 20 == 0:
total_distance = current_coords.project(Point(own_coords[i]))
else:
total_distance += next_distance
assert len(result_coords) == len(result_coords_origin)
return result_coords, result_coords_origin
# Partly taken from https://github.com/mikedh/pocketing/blob/master/pocketing/polygons.py
def interpolate_LinearRings(a, b, start=None, step=.005):
"""
Interpolate between two LinearRings
Parameters
-------------
a : shapely.geometry.Polygon.LinearRing
LinearRing start point will lie on
b : shapely.geometry.Polygon.LinearRing
LinearRing end point will lie on
start : (2,) float, or None
Point to start at
step : float
How far apart should points on
the path be.
Returns
-------------
path : (n, 2) float
Path interpolated between two LinearRings
"""
# resample the first LinearRing so every sample is spaced evenly
ra = trimesh.path.traversal.resample_path(
a, step=step)
if not a.is_ccw:
ra = ra[::-1]
assert trimesh.path.util.is_ccw(ra)
if start is not None:
# find the closest index on LinerRing 'a'
# by creating a KDTree
tree_a = spatial.cKDTree(ra)
index = tree_a.query(start)[1]
ra = np.roll(ra, -index, axis=0)
# resample the second LinearRing for even spacing
rb = trimesh.path.traversal.resample_path(b,
step=step)
if not b.is_ccw:
rb = rb[::-1]
# we want points on 'b' that correspond index- wise
# the resampled points on 'a'
tree_b = spatial.cKDTree(rb)
# points on b with corresponding indexes to ra
pb = rb[tree_b.query(ra)[1]]
# linearly interpolate between 'a' and 'b'
weights = np.linspace(0.0, 1.0, len(ra)).reshape((-1, 1))
# start on 'a' and end on 'b'
points = (ra * (1.0 - weights)) + (pb * weights)
result = LineString(points)
return result.simplify(constants.simplification_threshold, False)
def connect_raster_tree_spiral(
tree, used_offset, stitch_distance, close_point, offset_by_half):
"""
Takes the offsetted curves organized as tree, connects and samples them as a spiral.
It expects that each node in the tree has max. one child
Input:
-tree: contains the offsetted curves in a hierarchical organized
data structure.
-used_offset: used offset when the offsetted curves were generated
-stitch_distance: maximum allowed distance between two points
after sampling
-close_point: defines the beginning point for stitching
(stitching starts always from the undisplaced curve)
-offset_by_half: If true the resulting points are interlaced otherwise not.
Returnvalues:
-All offsetted curves connected to one spiral and sampled with
points obeying stitch_distance and offset_by_half
-Tag (origin) of each point to analyze why a point was
placed at this position
"""
abs_offset = abs(used_offset)
if tree.is_leaf:
return LineStringSampling.raster_line_string_with_priority_points(
tree.val,
0,
tree.val.length,
stitch_distance,
tree.transferred_point_priority_deque,
abs_offset,
offset_by_half,
False)
result_coords = []
result_coords_origin = []
starting_point = close_point.coords[0]
# iterate to the second last level
for node in PreOrderIter(tree, stop=lambda n: n.is_leaf):
ring1 = node.val
ring2 = node.children[0].val
part_spiral = interpolate_LinearRings(
ring1, ring2, starting_point)
node.val = part_spiral
for node in PreOrderIter(tree, stop=lambda n: n.is_leaf):
(own_coords, own_coords_origin) = LineStringSampling.raster_line_string_with_priority_points(
node.val,
0,
node.val.length,
stitch_distance,
node.transferred_point_priority_deque,
abs_offset,
offset_by_half,
False)
PointTransfer.transfer_points_to_surrounding(
node,
-used_offset,
offset_by_half,
own_coords,
own_coords_origin,
overnext_neighbor=False,
transfer_forbidden_points=False,
transfer_to_parent=False,
transfer_to_sibling=False,
transfer_to_child=True)
# We transfer also to the overnext child to get a more straight
# arrangement of points perpendicular to the stitching lines
if offset_by_half:
PointTransfer.transfer_points_to_surrounding(
node,
-used_offset,
False,
own_coords,
own_coords_origin,
overnext_neighbor=True,
transfer_forbidden_points=False,
transfer_to_parent=False,
transfer_to_sibling=False,
transfer_to_child=True)
# Check whether starting of own_coords or end of result_coords can be removed
if not result_coords:
result_coords.extend(own_coords)
result_coords_origin.extend(own_coords_origin)
elif len(own_coords) > 0:
if Point(result_coords[-1]).distance(Point(own_coords[0])) > constants.line_lengh_seen_as_one_point:
lineseg = LineString(
[result_coords[-2], result_coords[-1], own_coords[0], own_coords[1]])
else:
lineseg = LineString(
[result_coords[-2], result_coords[-1], own_coords[1]])
(temp_coords, _) = LineStringSampling.raster_line_string_with_priority_points(lineseg, 0, lineseg.length, stitch_distance,
DEPQ(), abs_offset, offset_by_half, False)
if len(temp_coords) == 2: # only start and end point of lineseg was needed
result_coords.pop()
result_coords_origin.pop()
result_coords.extend(own_coords[1:])
result_coords_origin.extend(own_coords_origin[1:])
elif len(temp_coords) == 3: # one middle point within lineseg was needed
result_coords.pop()
result_coords.append(temp_coords[1])
result_coords.extend(own_coords[1:])
result_coords_origin.extend(own_coords_origin[1:])
else: # all points were needed
result_coords.extend(own_coords)
result_coords_origin.extend(own_coords_origin)
# make sure the next section starts where this
# section of the curve ends
starting_point = result_coords[-1]
assert len(result_coords) == len(result_coords_origin)
return result_coords, result_coords_origin
|