1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
import matplotlib.pyplot as plt
from shapely.geometry import Polygon
from anytree import PreOrderIter
# import LineStringSampling as Sampler
import numpy as np
import matplotlib.collections as mcoll
# def offset_polygons(polys, offset,joinstyle):
# if polys.geom_type == 'Polygon':
# inners = polys.interiors
# outer = polys.exterior
# polyinners = []
# for inner in inners:
# inner = inner.parallel_offset(offset,'left', 5, joinstyle, 1)
# polyinners.append(Polygon(inner))
# outer = outer.parallel_offset(offset,'left', 5, joinstyle, 1)
# return Polygon(outer).difference(MultiPolygon(polyinners))
# else:
# polyreturns = []
# for poly in polys:
# inners = poly.interiors
# outer = poly.exterior
# polyinners = []
# for inner in inners:
# inner = inner.parallel_offset(offset,'left', 5, joinstyle, 1)
# polyinners.append(Polygon(inner))
# outer = outer.parallel_offset(offset,'left', 5, joinstyle, 1)
# result = Polygon(outer).difference(MultiPolygon(polyinners))
# polyreturns.append(result)
# return MultiPolygon(polyreturns)
# For debugging
def plot_MultiPolygon(MultiPoly, plt, colorString):
if MultiPoly.is_empty:
return
if MultiPoly.geom_type == "Polygon":
x2, y2 = MultiPoly.exterior.xy
plt.plot(x2, y2, colorString)
for inners in MultiPoly.interiors:
x2, y2 = inners.coords.xy
plt.plot(x2, y2, colorString)
else:
for poly in MultiPoly:
x2, y2 = poly.exterior.xy
plt.plot(x2, y2, colorString)
for inners in poly.interiors:
x2, y2 = inners.coords.xy
plt.plot(x2, y2, colorString)
# Test whether there are areas which would currently not be stitched but should be stitched
def subtractResult(poly, rootPoly, offsetThresh):
poly2 = Polygon(poly)
for node in PreOrderIter(rootPoly):
poly2 = poly2.difference(node.val.buffer(offsetThresh, 5, 3, 3))
return poly2
# Used for debugging - plots all polygon exteriors within an AnyTree which is provided by the root node rootPoly.
def drawPoly(rootPoly, colorString):
fig, axs = plt.subplots(1, 1)
axs.axis("equal")
plt.gca().invert_yaxis()
for node in PreOrderIter(rootPoly):
# if(node.id == "hole"):
# node.val = LinearRing(node.val.coords[::-1])
print("Bounds:")
print(node.val.bounds)
x2, y2 = node.val.coords.xy
plt.plot(x2, y2, colorString)
plt.show(block=True)
def drawresult(resultcoords, resultcoords_Origin, colorString):
fig, axs = plt.subplots(1, 1)
axs.axis("equal")
plt.gca().invert_yaxis()
plt.plot(*zip(*resultcoords), colorString)
colormap = np.array(["r", "g", "b", "c", "m", "y", "k", "gray", "m"])
labelmap = np.array(
[
"MUST_USE",
"REGULAR_SPACING",
"INITIAL_RASTERING",
"EDGE_NEEDED",
"NOT_NEEDED",
"ALREADY_TRANSFERRED",
"ADDITIONAL_TRACKING_POINT_NOT_NEEDED",
"EDGE_RASTERING_ALLOWED",
"EDGE_PREVIOUSLY_SHIFTED",
]
)
for i in range(0, 8 + 1):
# if i != Sampler.PointSource.EDGE_NEEDED and i != Sampler.PointSource.INITIAL_RASTERING:
# continue
selection = []
for j in range(len(resultcoords)):
if i == resultcoords_Origin[j]:
selection.append(resultcoords[j])
if len(selection) > 0:
plt.scatter(*zip(*selection), c=colormap[i], label=labelmap[i])
# plt.scatter(*zip(*resultcoords),
# c=colormap[resultcoords_Origin])
axs.legend()
plt.show(block=True)
# Just for debugging in order to draw the connected line with color gradient
def colorline(
x,
y,
z=None,
cmap=plt.get_cmap("copper"),
norm=plt.Normalize(0.0, 1.0),
linewidth=3,
alpha=1.0,
):
"""
http://nbviewer.ipython.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb
http://matplotlib.org/examples/pylab_examples/multicolored_line.html
Plot a colored line with coordinates x and y
Optionally specify colors in the array z
Optionally specify a colormap, a norm function and a line width
"""
# Default colors equally spaced on [0,1]:
if z is None:
z = np.linspace(0.0, 1.0, len(x))
# Special case if a single number:
if not hasattr(z, "__iter__"): # to check for numerical input -- this is a hack
z = np.array([z])
z = np.asarray(z)
segments = make_segments(x, y)
lc = mcoll.LineCollection(
segments, array=z, cmap=cmap, norm=norm, linewidth=linewidth, alpha=alpha
)
ax = plt.gca()
ax.add_collection(lc)
return lc
# Used by colorline
def make_segments(x, y):
"""
Create list of line segments from x and y coordinates, in the correct format
for LineCollection: an array of the form numlines x (points per line) x 2 (x
and y) array
"""
points = np.array([x, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
return segments
|