1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
from shapely.geometry.polygon import LinearRing, LineString
from shapely.geometry import Polygon, MultiLineString
from shapely.ops import polygonize
from shapely.geometry import MultiPolygon
from anytree import AnyNode, PreOrderIter
from shapely.geometry.polygon import orient
from depq import DEPQ
from enum import IntEnum
from ..stitches import ConnectAndSamplePattern
from ..stitches import constants
def offset_linear_ring(ring, offset, side, resolution, join_style, mitre_limit):
"""
Solves following problem: When shapely offsets a LinearRing the
start/end point might be handled wrongly since they
are only treated as LineString.
(See e.g. https://i.stack.imgur.com/vVh56.png as a problematic example)
This method checks first whether the start/end point form a problematic
edge with respect to the offset side. If it is not a problematic
edge we can use the normal offset_routine. Otherwise we need to
perform two offsets:
-offset the ring
-offset the start/end point + its two neighbors left and right
Finally both offsets are merged together to get the correct
offset of a LinearRing
"""
coords = ring.coords[:]
# check whether edge at index 0 is concave or convex. Only for
# concave edges we need to spend additional effort
dx_seg1 = dy_seg1 = 0
if coords[0] != coords[-1]:
dx_seg1 = coords[0][0] - coords[-1][0]
dy_seg1 = coords[0][1] - coords[-1][1]
else:
dx_seg1 = coords[0][0] - coords[-2][0]
dy_seg1 = coords[0][1] - coords[-2][1]
dx_seg2 = coords[1][0] - coords[0][0]
dy_seg2 = coords[1][1] - coords[0][1]
# use cross product:
crossvalue = dx_seg1 * dy_seg2 - dy_seg1 * dx_seg2
sidesign = 1
if side == "left":
sidesign = -1
# We do not need to take care of the joint n-0 since we
# offset along a concave edge:
if sidesign * offset * crossvalue <= 0:
return ring.parallel_offset(offset, side, resolution, join_style, mitre_limit)
# We offset along a convex edge so we offset the joint n-0 separately:
if coords[0] != coords[-1]:
coords.append(coords[0])
offset_ring1 = ring.parallel_offset(
offset, side, resolution, join_style, mitre_limit
)
offset_ring2 = LineString((coords[-2], coords[0], coords[1])).parallel_offset(
offset, side, resolution, join_style, mitre_limit
)
# Next we need to merge the results:
if offset_ring1.geom_type == "LineString":
return LinearRing(offset_ring2.coords[:] + offset_ring1.coords[1:-1])
else:
# We have more than one resulting LineString for offset of
# the geometry (ring) = offset_ring1.
# Hence we need to find the LineString which belongs to the
# offset of element 0 in coords =offset_ring2
# in order to add offset_ring2 geometry to it:
result_list = []
thresh = constants.offset_factor_for_adjacent_geometry * abs(offset)
for offsets in offset_ring1:
if (
abs(offsets.coords[0][0] - coords[0][0]) < thresh
and abs(offsets.coords[0][1] - coords[0][1]) < thresh
):
result_list.append(
LinearRing(offset_ring2.coords[:] + offsets.coords[1:-1])
)
else:
result_list.append(LinearRing(offsets))
return MultiLineString(result_list)
def take_only_valid_linear_rings(rings):
"""
Removes all geometries which do not form a "valid" LinearRing
(meaning a ring which does not form a straight line)
"""
if rings.geom_type == "MultiLineString":
new_list = []
for ring in rings:
if len(ring.coords) > 3 or (
len(ring.coords) == 3 and ring.coords[0] != ring.coords[-1]
):
new_list.append(ring)
if len(new_list) == 1:
return LinearRing(new_list[0])
else:
return MultiLineString(new_list)
else:
if len(rings.coords) <= 2:
return LinearRing()
elif len(rings.coords) == 3 and rings.coords[0] == rings.coords[-1]:
return LinearRing()
else:
return rings
def make_tree_uniform_ccw(root):
"""
Since naturally holes have the opposite point ordering than non-holes we
make all lines within the tree "root" uniform (having all the same
ordering direction)
"""
for node in PreOrderIter(root):
if node.id == "hole":
node.val.coords = list(node.val.coords)[::-1]
# Used to define which stitching strategy shall be used
class StitchingStrategy(IntEnum):
CLOSEST_POINT = 0
INNER_TO_OUTER = 1
SPIRAL = 2
def offset_poly(
poly, offset, join_style, stitch_distance, offset_by_half, strategy, starting_point):
"""
Takes a polygon (which can have holes) as input and creates offsetted
versions until the polygon is filled with these smaller offsets.
These created geometries are afterwards connected to each other and
resampled with a maximum stitch_distance.
The return value is a LineString which should cover the full polygon.
Input:
-poly: The shapely polygon which can have holes
-offset: The used offset for the curves
-join_style: Join style for the offset - can be round, mitered or bevel
(https://shapely.readthedocs.io/en/stable/manual.html#shapely.geometry.JOIN_STYLE)
For examples look at
https://shapely.readthedocs.io/en/stable/_images/parallel_offset.png
-stitch_distance maximum allowed stitch distance between two points
-offset_by_half: True if the points shall be interlaced
-strategy: According to StitchingStrategy enum class you can select between
different strategies for the connection between parent and childs
-starting_point: Defines the starting point for the stitching
Output:
-List of point coordinate tuples
-Tag (origin) of each point to analyze why a point was placed
at this position
"""
ordered_poly = orient(poly, -1)
ordered_poly = ordered_poly.simplify(
constants.simplification_threshold, False)
root = AnyNode(
id="node",
val=ordered_poly.exterior,
already_rastered=False,
transferred_point_priority_deque=DEPQ(iterable=None, maxlen=None),
)
active_polys = [root]
active_holes = [[]]
for holes in ordered_poly.interiors:
active_holes[0].append(
AnyNode(
id="hole",
val=holes,
already_rastered=False,
transferred_point_priority_deque=DEPQ(
iterable=None, maxlen=None),
)
)
while len(active_polys) > 0:
current_poly = active_polys.pop()
current_holes = active_holes.pop()
poly_inners = []
outer = offset_linear_ring(
current_poly.val,
offset,
"left",
resolution=5,
join_style=join_style,
mitre_limit=10,
)
outer = outer.simplify(constants.simplification_threshold, False)
outer = take_only_valid_linear_rings(outer)
for j in range(len(current_holes)):
inner = offset_linear_ring(
current_holes[j].val,
offset,
"left",
resolution=5,
join_style=join_style,
mitre_limit=10,
)
inner = inner.simplify(constants.simplification_threshold, False)
inner = take_only_valid_linear_rings(inner)
if not inner.is_empty:
poly_inners.append(Polygon(inner))
if not outer.is_empty:
if len(poly_inners) == 0:
if outer.geom_type == "LineString":
result = Polygon(outer)
else:
result = MultiPolygon(polygonize(outer))
else:
if outer.geom_type == "LineString":
result = Polygon(outer).difference(
MultiPolygon(poly_inners))
else:
result = MultiPolygon(outer).difference(
MultiPolygon(poly_inners))
if not result.is_empty and result.area > offset * offset / 10:
result_list = []
if result.geom_type == "Polygon":
result_list = [result]
else:
result_list = list(result)
for polygon in result_list:
polygon = orient(polygon, -1)
if polygon.area < offset * offset / 10:
continue
polygon = polygon.simplify(
constants.simplification_threshold, False
)
poly_coords = polygon.exterior
poly_coords = take_only_valid_linear_rings(poly_coords)
if poly_coords.is_empty:
continue
node = AnyNode(
id="node",
parent=current_poly,
val=poly_coords,
already_rastered=False,
transferred_point_priority_deque=DEPQ(
iterable=None, maxlen=None
),
)
active_polys.append(node)
hole_node_list = []
for hole in polygon.interiors:
hole_node = AnyNode(
id="hole",
val=hole,
already_rastered=False,
transferred_point_priority_deque=DEPQ(
iterable=None, maxlen=None
),
)
for previous_hole in current_holes:
if Polygon(hole).contains(Polygon(previous_hole.val)):
previous_hole.parent = hole_node
hole_node_list.append(hole_node)
active_holes.append(hole_node_list)
for previous_hole in current_holes:
# If the previous holes are not
# contained in the new holes they
# have been merged with the
# outer polygon
if previous_hole.parent is None:
previous_hole.parent = current_poly
# DebuggingMethods.drawPoly(root, 'r-')
make_tree_uniform_ccw(root)
# print(RenderTree(root))
if strategy == StitchingStrategy.CLOSEST_POINT:
(
connected_line,
connected_line_origin,
) = ConnectAndSamplePattern.connect_raster_tree_nearest_neighbor(
root, offset, stitch_distance, starting_point, offset_by_half
)
elif strategy == StitchingStrategy.INNER_TO_OUTER:
(
connected_line,
connected_line_origin,
) = ConnectAndSamplePattern.connect_raster_tree_from_inner_to_outer(
root, offset, stitch_distance, starting_point, offset_by_half
)
else:
raise ValueError("Invalid stitching stratety!")
return connected_line, connected_line_origin
|