1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
from math import atan2, copysign
from random import random
import numpy as np
import shapely.prepared
from shapely import geometry as shgeo
from shapely.affinity import translate
from shapely.ops import linemerge, nearest_points, unary_union
from ..debug import debug
from ..stitch_plan import Stitch
from ..utils.geometry import Point as InkstitchPoint
from ..utils.geometry import (ensure_geometry_collection,
ensure_multi_line_string, reverse_line_string)
from .auto_fill import (auto_fill, build_fill_stitch_graph, build_travel_graph,
collapse_sequential_outline_edges, find_stitch_path,
graph_is_valid, travel)
def guided_fill(shape,
guideline,
angle,
row_spacing,
num_staggers,
max_stitch_length,
running_stitch_length,
running_stitch_tolerance,
skip_last,
starting_point,
ending_point,
underpath,
strategy
):
segments = intersect_region_with_grating_guideline(shape, guideline, row_spacing, num_staggers, max_stitch_length, strategy)
if not segments:
return fallback(shape, guideline, row_spacing, max_stitch_length, running_stitch_length, running_stitch_tolerance,
num_staggers, skip_last, starting_point, ending_point, underpath)
fill_stitch_graph = build_fill_stitch_graph(shape, segments, starting_point, ending_point)
if not graph_is_valid(fill_stitch_graph, shape, max_stitch_length):
return fallback(shape, guideline, row_spacing, max_stitch_length, running_stitch_length, running_stitch_tolerance,
num_staggers, skip_last, starting_point, ending_point, underpath)
travel_graph = build_travel_graph(fill_stitch_graph, shape, angle, underpath)
path = find_stitch_path(fill_stitch_graph, travel_graph, starting_point, ending_point)
result = path_to_stitches(path, travel_graph, fill_stitch_graph, max_stitch_length, running_stitch_length, running_stitch_tolerance, skip_last)
return result
def fallback(shape, guideline, row_spacing, max_stitch_length, running_stitch_length, running_stitch_tolerance,
num_staggers, skip_last, starting_point, ending_point, underpath):
# fall back to normal auto-fill with an angle that matches the guideline (sorta)
guide_start, guide_end = [guideline.coords[0], guideline.coords[-1]]
angle = atan2(guide_end[1] - guide_start[1], guide_end[0] - guide_start[0]) * -1
return auto_fill(shape, angle, row_spacing, None, max_stitch_length, running_stitch_length, running_stitch_tolerance,
num_staggers, skip_last, starting_point, ending_point, underpath)
def path_to_stitches(path, travel_graph, fill_stitch_graph, stitch_length, running_stitch_length, running_stitch_tolerance, skip_last):
path = collapse_sequential_outline_edges(path)
stitches = []
# If the very first stitch is travel, we'll omit it in travel(), so add it here.
if not path[0].is_segment():
stitches.append(Stitch(*path[0].nodes[0]))
for edge in path:
if edge.is_segment():
current_edge = fill_stitch_graph[edge[0]][edge[-1]]['segment']
path_geometry = current_edge['geometry']
if edge[0] != path_geometry.coords[0]:
path_geometry = reverse_line_string(path_geometry)
new_stitches = [Stitch(*point) for point in path_geometry.coords]
# need to tag stitches
if skip_last:
del new_stitches[-1]
stitches.extend(new_stitches)
travel_graph.remove_edges_from(fill_stitch_graph[edge[0]][edge[1]]['segment'].get('underpath_edges', []))
else:
stitches.extend(travel(travel_graph, edge[0], edge[1], running_stitch_length, running_stitch_tolerance, skip_last))
return stitches
def extend_line(line, shape):
(minx, miny, maxx, maxy) = shape.bounds
upper_left = InkstitchPoint(minx, miny)
lower_right = InkstitchPoint(maxx, maxy)
length = (upper_left - lower_right).length()
start_point = InkstitchPoint.from_tuple(line.coords[0])
end_point = InkstitchPoint.from_tuple(line.coords[-1])
direction = (end_point - start_point).unit()
new_start_point = start_point - direction * length
new_end_point = end_point + direction * length
# without this, we seem especially likely to run into this libgeos bug:
# https://github.com/shapely/shapely/issues/820
new_start_point += InkstitchPoint(random() * 0.01, random() * 0.01)
new_end_point += InkstitchPoint(random() * 0.01, random() * 0.01)
return shgeo.LineString((new_start_point, *line.coords, new_end_point))
def repair_multiple_parallel_offset_curves(multi_line):
lines = ensure_multi_line_string(linemerge(multi_line))
longest_line = max(lines.geoms, key=lambda line: line.length)
# need simplify to avoid doubled points caused by linemerge
return longest_line.simplify(0.01, False)
def repair_non_simple_line(line):
repaired = unary_union(line)
counter = 0
# Do several iterations since we might have several concatenated selfcrossings
while repaired.geom_type != 'LineString' and counter < 4:
line_segments = []
for line_seg in repaired.geoms:
if not line_seg.is_ring:
line_segments.append(line_seg)
repaired = unary_union(linemerge(line_segments))
counter += 1
if repaired.geom_type != 'LineString':
# They gave us a line with complicated self-intersections. Use a fallback.
return shgeo.LineString((line.coords[0], line.coords[-1]))
else:
return repaired
def take_only_line_strings(thing):
things = ensure_geometry_collection(thing)
line_strings = [line for line in things.geoms if isinstance(line, shgeo.LineString)]
return shgeo.MultiLineString(line_strings)
def apply_stitches(line, max_stitch_length, num_staggers, row_spacing, row_num):
start = (float(row_num % num_staggers) / num_staggers) * max_stitch_length
projections = np.arange(start, line.length, max_stitch_length)
points = np.array([line.interpolate(projection).coords[0] for projection in projections])
stitched_line = shgeo.LineString(points)
# stitched_line may round corners, which will look terrible. This finds the
# corners.
threshold = row_spacing / 2.0
simplified_line = line.simplify(row_spacing / 2.0, False)
simplified_points = [shgeo.Point(x, y) for x, y in simplified_line.coords]
extra_points = []
extra_point_projections = []
for point in simplified_points:
if point.distance(stitched_line) > threshold:
extra_points.append(point.coords[0])
extra_point_projections.append(line.project(point))
# Now we need to insert the new points into their correct spots in the line.
indices = np.searchsorted(projections, extra_point_projections)
if len(indices) > 0:
points = np.insert(points, indices, extra_points, axis=0)
return shgeo.LineString(points)
def prepare_guide_line(line, shape):
if line.geom_type != 'LineString' or not line.is_simple:
line = repair_non_simple_line(line)
if line.is_ring:
# If they pass us a ring, break it to avoid dividing by zero when
# calculating a unit vector from start to end.
line = shgeo.LineString(line.coords[:-2])
# extend the end points away from each other
line = extend_line(line, shape)
return line
def clean_offset_line(offset_line):
offset_line = take_only_line_strings(offset_line)
if isinstance(offset_line, shgeo.MultiLineString):
offset_line = repair_multiple_parallel_offset_curves(offset_line)
if not offset_line.is_simple:
offset_line = repair_non_simple_line(offset_line)
return offset_line
def _get_start_row(line, shape, row_spacing, line_direction):
if line.intersects(shape):
return 0
point1, point2 = nearest_points(line, shape.centroid)
distance = point1.distance(point2)
row = int(distance / row_spacing)
# This flips the sign of the starting row if the shape is on the other side
# of the guide line
shape_direction = InkstitchPoint.from_shapely_point(point2) - InkstitchPoint.from_shapely_point(point1)
return copysign(row, shape_direction * line_direction)
def intersect_region_with_grating_guideline(shape, line, row_spacing, num_staggers, max_stitch_length, strategy):
line = prepare_guide_line(line, shape)
debug.log_line_string(shape.exterior, "guided fill shape")
translate_direction = InkstitchPoint(*line.coords[-1]) - InkstitchPoint(*line.coords[0])
translate_direction = translate_direction.unit().rotate_left()
shape_envelope = shapely.prepared.prep(shape.convex_hull)
start_row = _get_start_row(line, shape, row_spacing, translate_direction)
row = start_row
direction = 1
offset_line = None
rows = []
while True:
if strategy == 0:
translate_amount = translate_direction * row * row_spacing
offset_line = translate(line, xoff=translate_amount.x, yoff=translate_amount.y)
elif strategy == 1:
offset_line = line.parallel_offset(row * row_spacing, 'left', join_style=shgeo.JOIN_STYLE.round)
offset_line = clean_offset_line(offset_line)
if strategy == 1 and direction == -1:
# negative parallel offsets are reversed, so we need to compensate
offset_line = reverse_line_string(offset_line)
debug.log_line_string(offset_line, f"offset {row}")
stitched_line = apply_stitches(offset_line, max_stitch_length, num_staggers, row_spacing, row * direction)
intersection = shape.intersection(stitched_line)
if shape_envelope.intersects(stitched_line):
for segment in take_only_line_strings(intersection).geoms:
rows.append(segment.coords[:])
row += direction
else:
if direction == 1:
direction = -1
row = start_row - 1
else:
break
return rows
|