1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
from collections import defaultdict
from math import atan2
import numpy as np
from shapely.affinity import rotate, scale, translate
from shapely.geometry import LineString, Point
from .running_stitch import running_stitch
from ..elements import SatinColumn
from ..utils import Point as InkstitchPoint
from ..utils.geometry import line_string_to_point_list
def ripple_stitch(stroke):
'''
Ripple stitch is allowed to cross itself and doesn't care about an equal distance of lines
It is meant to be used with light (not dense) stitching
It will ignore holes in a closed shape. Closed shapes will be filled with a spiral
Open shapes will be stitched back and forth.
If there is only one (open) line or a closed shape the target point will be used.
If more sublines are present interpolation will take place between the first two.
'''
is_linear, helper_lines = _get_helper_lines(stroke)
ripple_points = _do_ripple(stroke, helper_lines, is_linear)
if stroke.reverse:
ripple_points.reverse()
if stroke.grid_size != 0:
ripple_points.extend(_do_grid(stroke, helper_lines))
stitches = running_stitch(ripple_points, stroke.running_stitch_length, stroke.running_stitch_tolerance)
return _repeat_coords(stitches, stroke.repeats)
def _do_ripple(stroke, helper_lines, is_linear):
points = []
for point_num in range(stroke.get_skip_start(), len(helper_lines[0]) - stroke.get_skip_end()):
row = []
for line_num in range(len(helper_lines)):
row.append(helper_lines[line_num][point_num])
if is_linear and point_num % 2 == 1:
# reverse every other row in linear ripple
row.reverse()
points.extend(row)
return points
def _get_helper_lines(stroke):
lines = stroke.as_multi_line_string().geoms
if len(lines) > 1:
return True, _get_satin_ripple_helper_lines(stroke)
else:
outline = LineString(running_stitch(line_string_to_point_list(lines[0]),
stroke.grid_size or stroke.running_stitch_length,
stroke.running_stitch_tolerance))
if stroke.is_closed:
return False, _get_circular_ripple_helper_lines(stroke, outline)
elif stroke.join_style == 1:
return True, _get_point_style_linear_helper_lines(stroke, outline)
else:
return True, _get_linear_ripple_helper_lines(stroke, outline)
def _get_satin_ripple_helper_lines(stroke):
# if grid_size has a number use this, otherwise use running_stitch_length
length = stroke.grid_size or stroke.running_stitch_length
# use satin column points for satin like build ripple stitches
rail_pairs = SatinColumn(stroke.node).plot_points_on_rails(length)
steps = _get_steps(stroke.get_line_count(), exponent=stroke.exponent, flip=stroke.flip_exponent)
helper_lines = []
for point0, point1 in rail_pairs:
helper_lines.append([])
helper_line = LineString((point0, point1))
for step in steps:
helper_lines[-1].append(InkstitchPoint.from_shapely_point(helper_line.interpolate(step, normalized=True)))
if stroke.join_style == 1:
helper_lines = _converge_helper_line_points(helper_lines, True)
return helper_lines
def _converge_helper_line_points(helper_lines, point_edge=False):
num_lines = len(helper_lines)
steps = _get_steps(num_lines)
for i, line in enumerate(helper_lines):
points = []
for j in range(len(line) - 1):
if point_edge and j % 2 == 1:
k = num_lines - 1 - i
points.append(line[j] * (1 - steps[k]) + line[j + 1] * steps[k])
else:
points.append(line[j] * (1 - steps[i]) + line[j + 1] * steps[i])
helper_lines[i] = points
return helper_lines
def _get_circular_ripple_helper_lines(stroke, outline):
helper_lines = _get_linear_ripple_helper_lines(stroke, outline)
# Now we want to adjust the helper lines to make a spiral.
return _converge_helper_line_points(helper_lines)
def _get_point_style_linear_helper_lines(stroke, outline):
helper_lines = _get_linear_ripple_helper_lines(stroke, outline)
return _converge_helper_line_points(helper_lines, True)
def _get_linear_ripple_helper_lines(stroke, outline):
guide_line = stroke.get_guide_line()
max_dist = stroke.grid_size or stroke.running_stitch_length
if guide_line:
return _get_guided_helper_lines(stroke, outline, max_dist)
else:
return _target_point_helper_lines(stroke, outline)
def _target_point_helper_lines(stroke, outline):
helper_lines = [[] for i in range(len(outline.coords))]
target = stroke.get_ripple_target()
steps = _get_steps(stroke.get_line_count(), exponent=stroke.exponent, flip=stroke.flip_exponent)
for i, point in enumerate(outline.coords):
line = LineString([point, target])
for step in steps:
helper_lines[i].append(InkstitchPoint.from_shapely_point(line.interpolate(step, normalized=True)))
return helper_lines
def _adjust_helper_lines_for_grid(stroke, helper_lines):
num_lines = stroke.line_count - stroke.skip_end
if stroke.reverse:
helper_lines = [helper_line[::-1] for helper_line in helper_lines]
num_lines = stroke.skip_start
if (num_lines % 2 != 0 and not stroke.is_closed) or (stroke.is_closed and not stroke.reverse):
helper_lines.reverse()
return helper_lines
def _do_grid(stroke, helper_lines):
helper_lines = _adjust_helper_lines_for_grid(stroke, helper_lines)
start = stroke.get_skip_start()
skip_end = stroke.get_skip_end()
if stroke.reverse:
start, skip_end = skip_end, start
for i, helper in enumerate(helper_lines):
end = len(helper) - skip_end
points = helper[start:end]
if i % 2 == 0:
points.reverse()
yield from points
def _get_guided_helper_lines(stroke, outline, max_distance):
# for each point generate a line going along and pointing to the guide line
guide_line = stroke.get_guide_line()
if isinstance(guide_line, SatinColumn):
# satin type guide line
return _generate_satin_guide_helper_lines(stroke, outline, guide_line)
else:
# simple guide line
return _generate_guided_helper_lines(stroke, outline, max_distance, guide_line.geoms[0])
def _generate_guided_helper_lines(stroke, outline, max_distance, guide_line):
# helper lines are generated by making copies of the outline along the guide line
line_point_dict = defaultdict(list)
outline = LineString(running_stitch(line_string_to_point_list(outline), max_distance, stroke.running_stitch_tolerance))
center = outline.centroid
center = InkstitchPoint(center.x, center.y)
outline_steps = _get_steps(stroke.get_line_count(), exponent=stroke.exponent, flip=stroke.flip_exponent)
scale_steps = _get_steps(stroke.get_line_count(), start=stroke.scale_start / 100.0, end=stroke.scale_end / 100.0)
start_point = InkstitchPoint(*(guide_line.coords[0]))
start_rotation = _get_start_rotation(guide_line)
previous_guide_point = None
for i in range(stroke.get_line_count()):
guide_point = InkstitchPoint.from_shapely_point(guide_line.interpolate(outline_steps[i], normalized=True))
translation = guide_point - start_point
scaling = scale_steps[i]
if stroke.rotate_ripples and previous_guide_point:
rotation = atan2(guide_point.y - previous_guide_point.y, guide_point.x - previous_guide_point.x)
rotation = rotation - start_rotation
else:
rotation = 0
transformed_outline = _transform_outline(translation, rotation, scaling, outline, Point(guide_point), stroke.scale_axis)
for j, point in enumerate(transformed_outline.coords):
line_point_dict[j].append(InkstitchPoint(point[0], point[1]))
previous_guide_point = guide_point
return _point_dict_to_helper_lines(len(outline.coords), line_point_dict)
def _get_start_rotation(line):
point0 = line.interpolate(0)
point1 = line.interpolate(0.1)
return atan2(point1.y - point0.y, point1.x - point0.x)
def _generate_satin_guide_helper_lines(stroke, outline, guide_line):
spacing = guide_line.center_line.length / (stroke.get_line_count() - 1)
rail_points = guide_line.plot_points_on_rails(spacing)
point0 = rail_points[0][0]
point1 = rail_points[1][0]
start_rotation = atan2(point1.y - point0.y, point1.x - point0.x)
start_scale = (point1 - point0).length()
outline_center = InkstitchPoint.from_shapely_point(outline.centroid)
line_point_dict = defaultdict(list)
# add scaled and rotated outlines along the satin column guide line
for i, (point0, point1) in enumerate(zip(*rail_points)):
guide_center = (point0 + point1) / 2
translation = guide_center - outline_center
if stroke.rotate_ripples:
rotation = atan2(point1.y - point0.y, point1.x - point0.x)
rotation = rotation - start_rotation
else:
rotation = 0
scaling = (point1 - point0).length() / start_scale
transformed_outline = _transform_outline(translation, rotation, scaling, outline, Point(guide_center), stroke.scale_axis)
# outline to helper line points
for j, point in enumerate(transformed_outline.coords):
line_point_dict[j].append(InkstitchPoint(point[0], point[1]))
return _point_dict_to_helper_lines(len(outline.coords), line_point_dict)
def _transform_outline(translation, rotation, scaling, outline, origin, scale_axis):
# transform
transformed_outline = translate(outline, translation.x, translation.y)
# rotate
if rotation != 0:
transformed_outline = rotate(transformed_outline, rotation, use_radians=True, origin=origin)
# scale | scale_axis => 0: xy, 1: x, 2: y, 3: none
scale_x = scale_y = scaling
if scale_axis in [2, 3]:
scale_x = 1
if scale_axis in [1, 3]:
scale_y = 1
transformed_outline = scale(transformed_outline, scale_x, scale_y, origin=origin)
return transformed_outline
def _point_dict_to_helper_lines(line_count, point_dict):
lines = []
for i in range(line_count):
points = point_dict[i]
lines.append(points)
return lines
def _get_steps(num_steps, start=0.0, end=1.0, exponent=1, flip=False):
steps = np.linspace(start, end, num_steps)
steps = steps ** exponent
if flip:
steps = 1.0 - np.flip(steps)
return list(steps)
def _repeat_coords(coords, repeats):
final_coords = []
for i in range(repeats):
if i % 2 == 1:
# reverse every other pass
this_coords = coords[::-1]
else:
this_coords = coords[:]
final_coords.extend(this_coords)
return final_coords
|