1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
from collections import defaultdict
from shapely.geometry import LineString, Point
from ..utils.geometry import line_string_to_point_list
from .running_stitch import running_stitch
def ripple_stitch(lines, target, line_count, points, max_stitch_length, repeats, flip, skip_start, skip_end, render_grid, exponent):
'''
Ripple stitch is allowed to cross itself and doesn't care about an equal distance of lines
It is meant to be used with light (not dense) stitching
It will ignore holes in a closed shape. Closed shapes will be filled with a spiral
Open shapes will be stitched back and forth.
If there is only one (open) line or a closed shape the target point will be used.
If more sublines are present interpolation will take place between the first two.
'''
# sort geoms by size
lines = sorted(lines.geoms, key=lambda linestring: linestring.length, reverse=True)
outline = lines[0]
# ignore skip_start and skip_end if both toghether are greater or equal to line_count
if skip_start + skip_end >= line_count:
skip_start = skip_end = 0
if is_closed(outline):
rippled_line = do_circular_ripple(outline, target, line_count, repeats, flip, max_stitch_length, skip_start, skip_end, exponent)
else:
rippled_line = do_linear_ripple(lines, points, target, line_count - 1, repeats, flip, skip_start, skip_end, render_grid, exponent)
return running_stitch(line_string_to_point_list(rippled_line), max_stitch_length)
def do_circular_ripple(outline, target, line_count, repeats, flip, max_stitch_length, skip_start, skip_end, exponent):
# for each point generate a line going to the target point
lines = target_point_lines_normalized_distances(outline, target, flip, max_stitch_length)
# create a list of points for each line
points = get_interpolation_points(lines, line_count, exponent, "circular")
# connect the lines to a spiral towards the target
coords = []
for i in range(skip_start, line_count - skip_end):
for j in range(len(lines)):
coords.append(Point(points[j][i].x, points[j][i].y))
coords = repeat_coords(coords, repeats)
return LineString(coords)
def do_linear_ripple(lines, points, target, line_count, repeats, flip, skip_start, skip_end, render_grid, exponent):
if len(lines) == 1:
helper_lines = target_point_lines(lines[0], target, flip)
else:
helper_lines = []
for start, end in zip(points[0], points[1]):
if flip:
helper_lines.append(LineString([end, start]))
else:
helper_lines.append(LineString([start, end]))
# get linear points along the lines
points = get_interpolation_points(helper_lines, line_count, exponent)
# go back and forth along the lines - flip direction of every second line
coords = []
for i in range(skip_start, len(points[0]) - skip_end):
for j in range(len(helper_lines)):
k = j
if i % 2 != 0:
k = len(helper_lines) - j - 1
coords.append(Point(points[k][i].x, points[k][i].y))
# add helper lines as a grid
# for now only add this to satin type ripples, otherwise it could become to dense at the target point
if len(lines) > 1 and render_grid:
coords.extend(do_grid(helper_lines, line_count - skip_end))
coords = repeat_coords(coords, repeats)
return LineString(coords)
def do_grid(lines, num_lines):
coords = []
if num_lines % 2 == 0:
lines = reversed(lines)
for i, line in enumerate(lines):
line_coords = list(line.coords)
if (i % 2 == 0 and num_lines % 2 == 0) or (i % 2 != 0 and num_lines % 2 != 0):
coords.extend(reversed(line_coords))
else:
coords.extend(line_coords)
return coords
def line_length(line):
return line.length
def is_closed(line):
coords = line.coords
return Point(*coords[0]).distance(Point(*coords[-1])) < 0.05
def target_point_lines(outline, target, flip):
lines = []
for point in outline.coords:
if flip:
lines.append(LineString([point, target]))
else:
lines.append(LineString([target, point]))
return lines
def target_point_lines_normalized_distances(outline, target, flip, max_stitch_length):
lines = []
outline = running_stitch(line_string_to_point_list(outline), max_stitch_length)
for point in outline:
if flip:
lines.append(LineString([target, point]))
else:
lines.append(LineString([point, target]))
return lines
def get_interpolation_points(lines, line_count, exponent, method="linear"):
new_points = defaultdict(list)
count = len(lines) - 1
for i, line in enumerate(lines):
steps = get_steps(line, line_count, exponent)
distance = -1
points = []
for j in range(line_count):
length = line.length * steps[j]
if method == "circular":
if distance == -1:
# the first line makes sure, it is going to be a spiral
distance = (line.length * steps[j+1]) * (i / count)
else:
distance += length - (line.length * steps[j-1])
else:
distance = line.length * steps[j]
points.append(line.interpolate(distance))
if method == "linear":
points.append(Point(*line.coords[-1]))
new_points[i] = points
return new_points
def get_steps(line, total_lines, exponent):
# get_steps is scribbled from the inkscape interpolate extension
# (https://gitlab.com/inkscape/extensions/-/blob/master/interp.py)
steps = [
((i + 1) / (total_lines)) ** exponent
for i in range(total_lines - 1)
]
return [0] + steps + [1]
def repeat_coords(coords, repeats):
final_coords = []
for i in range(repeats):
if i % 2 == 1:
# reverse every other pass
this_coords = coords[::-1]
else:
this_coords = coords[:]
final_coords.extend(this_coords)
return final_coords
|