1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
# Authors: see git history
#
# Copyright (c) 2010 Authors
# Licensed under the GNU GPL version 3.0 or later. See the file LICENSE for details.
import math
from shapely.geometry import LineString, LinearRing, MultiLineString, Polygon, MultiPolygon, MultiPoint, GeometryCollection
from shapely.geometry import Point as ShapelyPoint
from scipy.interpolate import splprep, splev
import numpy as np
def cut(line, distance, normalized=False):
""" Cuts a LineString in two at a distance from its starting point.
This is an example in the Shapely documentation.
"""
if normalized:
distance *= line.length
if distance <= 0.0:
return [None, line]
elif distance >= line.length:
return [line, None]
coords = list(ShapelyPoint(p) for p in line.coords)
traveled = 0
last_point = coords[0]
for i, p in enumerate(coords[1:], 1):
traveled += p.distance(last_point)
last_point = p
if traveled == distance:
return [
LineString(coords[:i + 1]),
LineString(coords[i:])]
if traveled > distance:
cp = line.interpolate(distance)
return [
LineString(coords[:i] + [(cp.x, cp.y)]),
LineString([(cp.x, cp.y)] + coords[i:])]
def cut_multiple(line, distances, normalized=False):
"""Cut a LineString at multiple distances along that line.
Always returns a list of N + 1 members, where N is the number of distances
provided. Some members of the list may be None, indicating an empty
segment. This can happen if one of the distances is at the start or end
of the line, or if duplicate distances are provided.
Returns:
a list of LineStrings or None values"""
distances = list(sorted(distances))
segments = [line]
distance_so_far = 0
nones = []
for distance in distances:
segment = segments.pop()
before, after = cut(segment, distance - distance_so_far, normalized)
segments.append(before)
if after is None:
nones.append(after)
else:
if before is not None:
distance_so_far += before.length
segments.append(after)
segments.extend(nones)
return segments
def roll_linear_ring(ring, distance, normalized=False):
"""Make a linear ring start at a different point.
Example: A B C D E F G A -> D E F G A B C
Same linear ring, different ordering of the coordinates.
"""
if not isinstance(ring, LinearRing):
# In case they handed us a LineString
ring = LinearRing(ring)
pieces = cut(LinearRing(ring), distance, normalized=False)
if None in pieces:
# We cut exactly at the start or end.
return ring
# The first and last point in a linear ring are duplicated, so we omit one
# copy
return LinearRing(pieces[1].coords[:] + pieces[0].coords[1:])
def reverse_line_string(line_string):
return LineString(line_string.coords[::-1])
def ensure_multi_line_string(thing):
"""Given either a MultiLineString or a single LineString, return a MultiLineString"""
if isinstance(thing, LineString):
return MultiLineString([thing])
else:
return thing
def ensure_geometry_collection(thing):
"""Given either some kind of geometry or a GeometryCollection, return a GeometryCollection"""
if isinstance(thing, (MultiLineString, MultiPolygon, MultiPoint)):
return GeometryCollection(thing.geoms)
elif isinstance(thing, GeometryCollection):
return thing
else:
return GeometryCollection([thing])
def ensure_multi_polygon(thing):
"""Given either a MultiPolygon or a single Polygon, return a MultiPolygon"""
if isinstance(thing, Polygon):
return MultiPolygon([thing])
else:
return thing
def cut_path(points, length):
"""Return a subsection of at the start of the path that is length units long.
Given a path denoted by a set of points, walk along it until we've travelled
the specified length and return a new path up to that point.
If the original path isn't that long, just return it as is.
"""
if len(points) < 2:
return points
path = LineString(points)
subpath, rest = cut(path, length)
return [Point(*point) for point in subpath.coords]
def _remove_duplicate_coordinates(coords_array):
"""Remove consecutive duplicate points from an array.
Arguments:
coords_array -- numpy.array
Returns:
a numpy.array of coordinates, minus consecutive duplicates
"""
differences = np.diff(coords_array, axis=0)
zero_differences = np.isclose(differences, 0)
keepers = np.r_[True, np.any(zero_differences == False, axis=1)] # noqa: E712
return coords_array[keepers]
def _add_extra_points(coords):
"""Add points at the start and end of the path.
The spline-based smoothing in smooth_path sometimes makes a wild deviation at the
start or end. Adding 3 extra points almost identical to the start and end points
seems to avoid this.
"""
direction = coords[1] - coords[0]
amount = direction * 0.001
start_points = [coords[0], coords[0] + amount, coords[0] + amount * 2, coords[0] + amount * 3]
direction = coords[-2] - coords[-1]
amount = direction * 0.001
end_points = [coords[-1] + amount * 3, coords[-1] + amount * 2, coords[-1] + amount, coords[-1]]
return np.concatenate((start_points, coords[1:-1], end_points), axis=0)
def smooth_path(path, smoothness=1.0):
"""Smooth a path of coordinates.
Arguments:
path -- an iterable of coordinate tuples or Points
smoothness -- float, how much smoothing to apply. Bigger numbers
smooth more.
Returns:
A list of Points.
"""
if smoothness == 0:
# s of exactly zero seems to indicate a default level of smoothing
# in splprep, so we'll just exit instead.
return path
# splprep blows up on duplicated consecutive points with "Invalid inputs"
coords = _remove_duplicate_coordinates(np.array(path))
num_points = len(coords)
if num_points <= 3:
# splprep throws an error unless num_points > k
return path
# s is explained in this issue: https://github.com/scipy/scipy/issues/11916
# the smoothness parameter limits how much the smoothed path can deviate
# from the original path. The standard deviation of the distance between
# the smoothed path and the original path is equal to the smoothness.
# In practical terms, if smoothness is 1mm, then the smoothed path can be
# up to 1mm away from the original path.
s = num_points * (smoothness ** 2)
coords = _add_extra_points(coords)
# .T transposes the array (for some reason splprep expects
# [[x1, x2, ...], [y1, y2, ...]]
tck, fp, ier, msg = splprep(coords.T, s=s, k=3, nest=-1, full_output=1)
if ier > 0:
from ..debug import debug
debug.log(f"error {ier} smoothing path: {msg}")
return path
# Evaluate the spline curve at many points along its length to produce the
# smoothed point list. 2 * num_points seems to be a good number, but it
# does produce a lot of points.
smoothed_x_values, smoothed_y_values = splev(np.linspace(0, 1, num_points * 2), tck[0])
coords = np.array([smoothed_x_values, smoothed_y_values]).T
return [Point(x, y) for x, y in coords]
class Point:
def __init__(self, x: float, y: float):
self.x = x
self.y = y
@classmethod
def from_shapely_point(cls, point):
return cls(point.x, point.y)
@classmethod
def from_tuple(cls, point):
return cls(point[0], point[1])
def __json__(self):
return vars(self)
def __add__(self, other):
return self.__class__(self.x + other.x, self.y + other.y)
def __sub__(self, other):
return self.__class__(self.x - other.x, self.y - other.y)
def mul(self, scalar):
return self.__class__(self.x * scalar, self.y * scalar)
def __mul__(self, other):
if isinstance(other, Point):
# dot product
return self.x * other.x + self.y * other.y
elif isinstance(other, (int, float)):
return self.__class__(self.x * other, self.y * other)
else:
raise ValueError("cannot multiply %s by %s" % (type(self), type(other)))
def __neg__(self):
return self * -1
def __rmul__(self, other):
if isinstance(other, (int, float)):
return self.__mul__(other)
else:
raise ValueError("cannot multiply %s by %s" % (type(self), type(other)))
def __truediv__(self, other):
if isinstance(other, (int, float)):
return self * (1.0 / other)
else:
raise ValueError("cannot divide %s by %s" % (type(self), type(other)))
def __eq__(self, other):
return self.x == other.x and self.y == other.y
def __repr__(self):
return "%s(%s,%s)" % (type(self), self.x, self.y)
def length(self):
return math.sqrt(math.pow(self.x, 2.0) + math.pow(self.y, 2.0))
def distance(self, other):
return (other - self).length()
def unit(self):
return self.mul(1.0 / self.length())
def angle(self):
return math.atan2(self.y, self.x)
def rotate_left(self):
return self.__class__(-self.y, self.x)
def rotate(self, angle):
return self.__class__(self.x * math.cos(angle) - self.y * math.sin(angle), self.y * math.cos(angle) + self.x * math.sin(angle))
def scale(self, x_scale, y_scale):
return self.__class__(self.x * x_scale, self.y * y_scale)
def as_int(self):
return self.__class__(int(round(self.x)), int(round(self.y)))
def as_tuple(self):
return (self.x, self.y)
def __getitem__(self, item):
return self.as_tuple()[item]
def __len__(self):
return 2
def __str__(self):
return "({0:.3f}, {1:.3f})".format(self.x, self.y)
def line_string_to_point_list(line_string):
return [Point(*point) for point in line_string.coords]
|