summaryrefslogtreecommitdiff
path: root/lib/utils/geometry.py
blob: 8d29ddb0975994d5d4b51091aa02620828e1a92b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Authors: see git history
#
# Copyright (c) 2010 Authors
# Licensed under the GNU GPL version 3.0 or later.  See the file LICENSE for details.

import math

from shapely.geometry import LineString, LinearRing, MultiLineString, Polygon, MultiPolygon, GeometryCollection
from shapely.geometry import Point as ShapelyPoint


def cut(line, distance, normalized=False):
    """ Cuts a LineString in two at a distance from its starting point.

    This is an example in the Shapely documentation.
    """
    if normalized:
        distance *= line.length

    if distance <= 0.0:
        return [None, line]
    elif distance >= line.length:
        return [line, None]

    coords = list(ShapelyPoint(p) for p in line.coords)
    traveled = 0
    last_point = coords[0]
    for i, p in enumerate(coords[1:], 1):
        traveled += p.distance(last_point)
        last_point = p
        if traveled == distance:
            return [
                LineString(coords[:i + 1]),
                LineString(coords[i:])]
        if traveled > distance:
            cp = line.interpolate(distance)
            return [
                LineString(coords[:i] + [(cp.x, cp.y)]),
                LineString([(cp.x, cp.y)] + coords[i:])]


def roll_linear_ring(ring, distance, normalized=False):
    """Make a linear ring start at a different point.

    Example: A B C D E F G A -> D E F G A B C

    Same linear ring, different ordering of the coordinates.
    """

    if not isinstance(ring, LinearRing):
        # In case they handed us a LineString
        ring = LinearRing(ring)

    pieces = cut(LinearRing(ring), distance, normalized=False)

    if None in pieces:
        # We cut exactly at the start or end.
        return ring

    # The first and last point in a linear ring are duplicated, so we omit one
    # copy
    return LinearRing(pieces[1].coords[:] + pieces[0].coords[1:])


def reverse_line_string(line_string):
    return LineString(line_string.coords[::-1])


def ensure_multi_line_string(thing):
    """Given either a MultiLineString or a single LineString, return a MultiLineString"""

    if isinstance(thing, LineString):
        return MultiLineString([thing])
    else:
        return thing


def ensure_geometry_collection(thing):
    """Given either some kind of geometry or a GeometryCollection, return a GeometryCollection"""

    if isinstance(thing, (MultiLineString, MultiPolygon)):
        return GeometryCollection(thing.geoms)
    elif isinstance(thing, GeometryCollection):
        return thing
    else:
        return GeometryCollection([thing])


def ensure_multi_polygon(thing):
    """Given either a MultiPolygon or a single Polygon, return a MultiPolygon"""

    if isinstance(thing, Polygon):
        return MultiPolygon([thing])
    else:
        return thing


def cut_path(points, length):
    """Return a subsection of at the start of the path that is length units long.

    Given a path denoted by a set of points, walk along it until we've travelled
    the specified length and return a new path up to that point.

    If the original path isn't that long, just return it as is.
    """

    if len(points) < 2:
        return points

    path = LineString(points)
    subpath, rest = cut(path, length)

    return [Point(*point) for point in subpath.coords]


def collapse_duplicate_point(geometry):
    if geometry.area < 0.01:
        return geometry.representative_point()

    return geometry


class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    @classmethod
    def from_shapely_point(cls, point):
        return cls(point.x, point.y)

    def __json__(self):
        return vars(self)

    def __add__(self, other):
        return self.__class__(self.x + other.x, self.y + other.y)

    def __sub__(self, other):
        return self.__class__(self.x - other.x, self.y - other.y)

    def mul(self, scalar):
        return self.__class__(self.x * scalar, self.y * scalar)

    def __mul__(self, other):
        if isinstance(other, Point):
            # dot product
            return self.x * other.x + self.y * other.y
        elif isinstance(other, (int, float)):
            return self.__class__(self.x * other, self.y * other)
        else:
            raise ValueError("cannot multiply %s by %s" % (type(self), type(other)))

    def __neg__(self):
        return self * -1

    def __rmul__(self, other):
        if isinstance(other, (int, float)):
            return self.__mul__(other)
        else:
            raise ValueError("cannot multiply %s by %s" % (type(self), type(other)))

    def __truediv__(self, other):
        if isinstance(other, (int, float)):
            return self * (1.0 / other)
        else:
            raise ValueError("cannot divide %s by %s" % (type(self), type(other)))

    def __eq__(self, other):
        return self.x == other.x and self.y == other.y

    def __repr__(self):
        return "%s(%s,%s)" % (type(self), self.x, self.y)

    def length(self):
        return math.sqrt(math.pow(self.x, 2.0) + math.pow(self.y, 2.0))

    def distance(self, other):
        return (other - self).length()

    def unit(self):
        return self.mul(1.0 / self.length())

    def rotate_left(self):
        return self.__class__(-self.y, self.x)

    def rotate(self, angle):
        return self.__class__(self.x * math.cos(angle) - self.y * math.sin(angle), self.y * math.cos(angle) + self.x * math.sin(angle))

    def as_int(self):
        return self.__class__(int(round(self.x)), int(round(self.y)))

    def as_tuple(self):
        return (self.x, self.y)

    def __getitem__(self, item):
        return self.as_tuple()[item]

    def __len__(self):
        return 2


def line_string_to_point_list(line_string):
    return [Point(*point) for point in line_string.coords]